
SCEC Code Validation: TPV105 
Rate-and-State Friction (Slip Law with Strong Rate-

Weakening) and Thermal Pressurization 
2D (with expected future extension to 3D whole-space) 

 
 
Note on 2D vs. 3D: This benchmark requires significantly more computational resources 
than previous benchmarks (at least with some of the numerical methods to solve the 
thermal pressurization equations). Hence, this benchmark is initially to be solved in 2D 
rather than 3D, but with the expectation that the 3D version will be possible for more 
groups in the future. This description is written for both 2D and 3D, but parameters are 
only given for the 2D problem. 
 
Model Geometry: A planar fault lies in an isotropic, linear elastic whole-space. The 
material on either side of the fault is characterized by its density ρ, S-wave speed cs, and 
P-wave speed cp. The properties are given in the table below and are constant everywhere 
in the medium. 
 

ρ cs cp 
2670 kg/m3 3.464 km/s 6 km/s 

 
To simplify later expressions, a coordinate system will be adopted in which the fault is 
the plane 

� 

z = 0, with the hypocenter located at 

� 

x0,y0( ) = −10.5,7.5 km( ). This is shown in 
the figure below. Note the new hypocenter location relative to that used in other TPV 
benchmark problems. The central portion of the fault, 

� 

−W < x <W ,  0 < y <W , with 

� 

W = 15 km, is velocity-weakening. A transition layer of width 

� 

w = 3 km in which the 
frictional properties continuously change from velocity-weakening to velocity-
strengthening surrounds the central velocity-weakening region of the fault. Outside of the 
transition region, the fault is velocity-strengthening.  
 



 
 
Friction Law: Let 

� 

τ = (τ x,τ y )  be the shear traction vector (specifically, the traction 
exerted by the positive side of the fault on the negative side), the magnitude of which is 

� 

τ = τ x
2 + τ y

2 , and let σ be the total normal stress acting on the fault, taken to be positive 
in compression. In terms of the components of the total stress tensor 

� 

σ ij , 

� 

τ x = σ zx , 

� 

τ y = σ zy , and 

� 

σ = −σ zz . The fault zone is assumed to be fluid-saturated with pore pressure 
p. The pore pressure may vary both along the fault and perpendicular to it: 

� 

p = p x,y,z( ) ; 
the pore pressure on the fault is 

� 

pf = pf x,y( ) = p x,y,0( ). The effective normal stress 
(again, positive in compression) is 

� 

σ = σ − pf . Let 

� 

V = (Vx,Vy )  be the slip velocity vector, 

the magnitude of which is 

� 

V = Vx
2 +Vy

2 , and let 

� 

δ = (δx,δy )  be the slip vector. Slip is 
defined as the displacement discontinuity across the fault: 

� 

δi = ui(x,y,0
+ ) − ui(x,y,0

−) i = x,y( ) , where 

� 

ui x,y,z( ) is the displacement field. Likewise, 

� 

Vi = vi(x,y,0
+ ) − vi(x,y,0

−) i = x,y( ) , where 

� 

vi x,y,z( )  is the particle velocity. Finally, let 
ψ be the state variable on the fault. The shear traction is always equal to the shear 
strength of the fault, which is the product of the friction coefficient and effective normal 
stress: 
 

 

� 

τ = f V ,ψ( )σ .     (1) 
 
The friction law is the same as in TPV103/104. The friction coefficient is a function of V 
and ψ: 
 

� 

f V ,ψ( ) = a arcsinh V
2V0

exp ψ
a
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The state variable evolves according to the equation 
 

   
dψ
dt

= −
V
L

ψ −ψ ss V( )⎡⎣ ⎤⎦ ,    (3) 
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V
sinh

fss V( )
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fss(V) is the steady state friction coefficient, which depends on V and the friction law 
parameters f0, V0, a, b, fw, and Vw: 
 

   

� 

fss V( ) = fw +
fLV V( ) − fw
1+ V Vw( )8[ ]1 8

,    (5) 

 
with a low-velocity steady state friction coefficient 
 
   

� 

fLV V( ) = f0 − b − a( ) ln V V0( ).   (6) 
 
The slip velocity vector points in the direction of the shear traction vector: 
 
    τ τ = V V .     (7) 
 
The friction law parameters are given in the table below. Note that with the exception of 
a and Vw, they are uniform on the fault. 
 

f0 V0 a(x,y) b L fw Vw(x,y) 
0.6 10-6 m/s 0.01+Δa(x,y) 0.014 0.4 m 0.2 0.1 m/s+ΔVw (x,y) 

 
To stop the rupture, the friction law changes from velocity-weakening in the 

rectangular interior region of the fault to velocity-strengthening sufficiently far outside 
this region. The transition occurs smoothly within a transition layer of width 

� 

w = 3 km. 
Outside the transition layer, the fault is made velocity-strengthening by increasing a by 

� 

Δa0 = 0.01 and Vw by ΔVw0 = 0.9 . 
 The changes in a and Vw, which are added to the values of a and Vw in the 
velocity-weakening interior of the fault, are 
 

� 

Δa(x,y) = Δa0 1− B x;W ,w( )B y − y0;W 2,w( )[ ]    (8) 

ΔVw (x, y) = ΔVw0 1− B x;W ,w( )B y − y0;W 2,w( )⎡⎣ ⎤⎦ ,  (9) 
 
in which 
 



� 

B x;W ,w( ) =
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1
2
1+ tanh w
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x −W
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  (10) 

 
is a mathematically smooth version of the boxcar function (meaning that B and all of its 
derivatives are continuous). 
 
Thermal Pressurization: In addition to changes in the friction coefficient, the fault 
strength can also be altered by changes in pore pressure on the fault in response to shear 
heating. Conservation of energy and fluid mass, together with Fourier’s law and Darcy’s 
law and several assumptions including neglecting advection, gives the following 
equations governing temperature T and pore pressure p in the fault zone: 
 
 

   

� 

∂T
∂t

= α th
∂ 2T
∂z2

+
τV

ρch 2π
exp −

z2

2h2
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⎜ 

⎞ 
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� 

∂p
∂t

= αhy
∂ 2p
∂z2

+ Λ
∂T
∂t
,     (12) 

 
in which 

� 

α th  is the thermal diffusivity, 

� 

αhy  is the hydraulic diffusivity, 

� 

ρc  is the 
volumetric heat capacity, and 

� 

Λ quantifies the undrained thermal pressurization response 
(i.e., the pore pressure increase per unit increase in temperature). We have assumed a 
finite width shear zone in which the shear strain rate distribution has a Gaussian shape 
with width h. Equations (11) and (12) hold at each point (x,y) on the fault. 
 Both boundary and initial conditions are required for T and p. The initial 
conditions are the constant values Tini=483.15 K and pini=80 MPa. Under the assumptions 
of spatially uniform properties in the z-direction and a localized region of shear heating, 
appropriate boundary conditions are 

� 

T →Tini  and 

� 

p→ pini as 

� 

z→±∞ . Due to the 
symmetry of T and p about 

� 

z = 0 , the problem can be reduced to one for only 

� 

z ≥ 0  with 
the boundary conditions 

� 

∂T ∂z = ∂p ∂z = 0  at 

� 

z = 0 . 
 The thermal pressurization parameters are given in the table below. They are all 
uniform on the fault. 
 

� 

α th  

� 

αhy  

� 

ρc  

� 

Λ h 

10-6 m2/s 10-4 m2/s 2.7 MJ/m3K 0.1 MPa/K 10 mm 

 
 
Initial Conditions: At 

� 

t = 0, the fault is everywhere sliding in the horizontal direction 
with initial velocity 

� 

V =Vini . The initial shear stress on the fault, which is also horizontal, 
is 

� 

τ ini, the effective normal stress is 

� 

σ ini , and the initial value of the state variable is 

� 

ψini x,y( ) . Note that the initial state variable is spatially variable, but the initial velocity 



and stresses are uniform. This is because the initial conditions must be self-consistent, in 
the sense that they must satisfy (1) and (2). Since the friction law parameter a is spatially 
variable, then, in order for the initial velocity and stress fields to be uniform, 

� 

ψini  must 
also be spatially variable. The values of the initial conditions are given in the table below. 
These values are for 2D only; in the future 3D benchmark, the initial shear stress and 
state variable will likely be different. 
 

Vini τini 

� 

σ ini  ψini(x,y) 
10-16 m/s 21 MPa (2D) 120 MPa 0.405258506536484+Δψ(x,y) (2D) 

 
Since the initial pore pressure is pini=80 MPa, the initial total normal stress is σini=200 
MPa. 
 From equations (1) and (2), it follows that 
 

   

� 

ψ ini(x,y) = aln 2V0
Vini

sinh τ ini
aσ ini
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In the medium surrounding the fault, the only nonzero stresses are the horizontal shear 
stress and the total normal stress component acting on the fault; these values are uniform 
and identical to those on the fault: 
 

� 

σzx (x,y,z) = τ ini  and  σzz(x,y,z) = −σini  at  t = 0 .   (14) 
 
The medium is initially moving with equal and opposite horizontal velocities of 

� 

Vini 2  on 
the two sides of the fault: 
 

� 

vx (x,y,z) =
Vini 2, z > 0
−Vini 2, z < 0

⎧ 
⎨ 
⎩ 

   at  t = 0 .    (15) 

 
Displacement in the medium and slip on the fault are measured from zero at 

� 

t = 0. 
 
Nucleation Method: Starting at 

� 

t = 0, rupture is nucleated by imposing a horizontal 
shear traction perturbation (i.e., a perturbation to 

� 

τ x) that depends on both space and 
time. The particular form is such that the perturbation smoothly grows from zero to its 
maximum amplitude 

� 

Δτ 0  over a finite time interval T (not to be confused with 
temperature), and is confined to a finite region of the fault of radius R. The perturbation is 
mathematically smooth in time and space (i.e., the function and all derivatives are 
continuous). Specifically, the perturbation is 
 
  

� 

Δτ x,y, t( ) = Δτ 0F x − x0( )2 + y − y0( )2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ G t( ),  (16) 

 
in which 
 



  

� 

F r( ) = exp r2
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and 
 

  

� 

G t( ) = exp
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The perturbation is radially symmetric, with the radial distance away from the hypocenter 
along the fault given by 

� 

r = x − x0( )2 + y − y0( )2 . The nucleation parameters are given 
in the table below. 
 

� 

Δτ 0  R T (x0,y0) 
60 MPa 1.5 km 1 s (−10.5 km,7.5 km) 



 
SCEC Code Validation: TPV105 

Rate-and-State Friction (Slip Law with Strong Rate-
Weakening) and Thermal Pressurization,  

Required Output 
 
For TPV105, the following data should be submitted to the code validation website 
(where instructions for the data file formats can be found): 
 
Time Histories of Fields at Fault Stations: 
 

Report the complete time histories from 

� 

t = 0 to 

� 

t = 15 s  of both components of 
slip (

� 

δx  and 

� 

δy ) and slip velocity (

� 

Vx  and 

� 

Vy ), both components of shear traction 
(

� 

τ x and 

� 

τ y), the effective normal stress (

� 

σ ), the state variable (

� 

ψ ), and 
temperature and pressure on the fault (T and p) at each of the following stations 
on the fault (thirteen in 3D, seven in 2D): 

 
x (km) 0 0 0 9 12 12 15 18 −9 −12 −12 −15 −18 
y (km) 3 7.5 12 7.5 3 12 7.5 7.5 7.5 3 12 7.5 7.5 

 

 
 
Rupture Front Arrival Times: 
 

Report the rupture front arrival time at all points within the velocity-weakening 
and transition regions 

� 

−18 km < x < 18 km, − 3 km < y < 18 km( ). The rupture 
front arrival time is defined as the time at which the slip velocity, V, first exceeds 
1 mm/s. 


