
SCEC Code Validation: TPV101 
Rate-and-State Friction, Ageing Law, Whole-Space 

 
Model Geometry: A planar fault lies in an isotropic, linear elastic whole-space. The 
material on either side of the fault is characterized by its density ρ, S-wave speed cs, and 
P-wave speed cp. The properties are given in the table below and are constant everywhere 
in the medium. 
 

ρ cs cp 
2670 kg/m3 3.464 km/s 6 km/s 

 
To simplify later expressions, a coordinate system will be adopted in which the fault is 
the plane 

! 

z = 0, with the hypocenter located at 

! 

x
0
,y

0( ) = 0,7.5 km( ) . This is shown in the 
figure below. The central portion of the fault, 

! 

"W < x <W ,  0 < y <W , with 

! 

W =15 km, 
is velocity-weakening. A transition layer of width 

! 

w = 3 km in which the frictional 
properties continuously change from velocity-weakening to velocity-strengthening 
surrounds the central velocity-weakening region of the fault. Outside of the transition 
region, the fault is velocity-strengthening.  
 

 
 
Friction Law: Let 

! 

" = (" x," y )  be the shear traction vector (specifically, the traction 
exerted by the positive side of the fault on the negative side), the magnitude of which is 

! 

" = " x
2

+ " y
2 , and let σ be the normal stress acting on the fault, taken to be positive in 

compression. In terms of the components of the stress tensor 

! 

" ij , 

! 

"
x

=#
zx

, 

! 

" y =# zy , and 

! 

" = #"
zz

. Let 

! 

V = (Vx,Vy )  be the slip velocity vector, the magnitude of which is 

! 

V = Vx

2
+Vy

2 , and let 

! 

" = ("x,"y )  be the slip vector. Slip is defined as the displacement 



discontinuity across the fault: 

! 

"i = ui(x,y,0
+
) # ui(x,y,0

#
) i = x,y( ) , where 

! 

ui x,y,z( ) is the 
displacement field. Likewise, 

! 

Vi = vi(x,y,0
+
) " vi(x,y,0

"
) i = x,y( ) , where 

! 

vi x,y,z( )  is the 
particle velocity. Finally, let θ be the state variable on the fault. The shear traction is 
always equal to the shear strength of the fault, which is a function of V, σ, and θ, as well 
as the friction law parameters f0, V0, a, b, and L: 
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The state variable evolves according to the equation 
 

    

! 

d"

dt
=1#

V"

L
.     (2) 

 
The slip velocity vector points in the direction of the shear traction vector: 
 

    

! 

"

"
=
V

V
.     (3) 

 
The friction law parameters are given in the table below. Note that with the exception of 
a, they are uniform on the fault. 
 

f0 V0 a(x,y) b L 
0.6 10-6 m/s 0.008+Δa(x,y) 0.012 0.02 m 

 
To stop the rupture, the friction law changes from velocity-weakening in the rectangular 
interior region of the fault to velocity-strengthening sufficiently far outside this region. 
The transition occurs smoothly within a transition layer of width 

! 

w = 3 km. Outside the 
transition layer, the fault is made velocity-strengthening by increasing a by 

! 

"a
0

= 0.008 . 
 The change in a, which is added to the value of a in the velocity-weakening 
interior of the fault, is 
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in which 
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is a mathematically smooth version of the boxcar function (meaning that B and all of its 
derivatives are continuous). 



 
Initial Conditions: At 

! 

t = 0, the fault is everywhere sliding in the horizontal direction 
with initial velocity 

! 

V =V
ini

. The initial shear stress on the fault, which is also horizontal, 
is 

! 

"
ini

, the normal stress is 

! 

"
ini

, and the initial value of the state variable is 

! 

"ini x,y( ) . Note 
that the initial state variable is spatially variable, but the initial velocity and stresses are 
uniform. This is because the initial conditions must be self-consistent, in the sense that 
they must satisfy (1). Since the friction law parameter a is spatially variable, then, in 
order for the initial velocity and stress fields to be uniform, 

! 

"
ini

 must also be spatially 
variable. The values of the initial conditions are given in the table below. 
 

Vini τini σini θini(x,y) 
10-12 m/s 75 MPa 120 MPa 1.606238999213454×109 s 

+ Δθ(x,y) 
= 50.899729562171359 yr 

+ Δθ(x,y) 
 
From equation (1), it follows that 
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In the medium surrounding the fault, the only nonzero stresses are the horizontal shear 
stress and the normal stress component acting on the fault; these values are uniform and 
identical to those on the fault: 
 

! 

" zx (x,y,z) = # ini  and  " zz(x,y,z) = $" ini  at  t = 0 .   (7) 
 
The medium is initially moving with equal and opposite horizontal velocities of 

! 

V
ini
2  on 

the two sides of the fault: 
 

! 

vx (x,y,z) =
Vini 2, z > 0

"Vini 2, z < 0

# 
$ 
% 

   at  t = 0 .    (8) 

 
Displacement in the medium and slip on the fault are measured from zero at 

! 

t = 0. 
 
Nucleation Method: Starting at 

! 

t = 0, rupture is nucleated by imposing a horizontal 
shear traction perturbation (i.e., a perturbation to 

! 

"
x
) that depends on both space and 

time. The particular form is such that the perturbation smoothly grows from zero to its 
maximum amplitude 

! 

"#
0
 over a finite time interval T, and is confined to a finite region 

of the fault of radius R. The perturbation is mathematically smooth in time and space 
(i.e., the function and all derivatives are continuous). Specifically, the perturbation is 
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in which 
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The perturbation is radially symmetric, with the radial distance away from the hypocenter 
along the fault given by 

! 

r = x " x
0( )
2

+ y " y
0( )
2 . The nucleation parameters are given 

in the table below. 
 

! 

"#
0
 R T (x0,y0) 

25 MPa 3 km 1 s (0,7.5 km) 
  



 
SCEC Code Validation: TPV102 

Rate-and-State Friction, Ageing Law, Half-Space 
 
This problem is identical to TPV101, but the fault is embedded in a half-space rather than 
a whole-space. In terms of the coordinate system defined for TPV101, the half-space is 
the region 

! 

y > 0 . The plane 

! 

y = 0  is a free surface. 



SCEC Code Validation: TPV101 and TPV102 
Rate-and-State Friction, Required Output 

 
For both TPV101 and TPV102, the following data should be submitted to the code 
validation website (where instructions for the data file formats can be found): 
 
Time Histories of Fields at Fault Stations: 
 

Report the complete time histories from 

! 

t = 0 to 

! 

t =12 s of both components of 
slip (

! 

"
x
 and 

! 

"y ) and slip velocity (

! 

V
x
 and 

! 

Vy ), all tractions (

! 

"
x
,

! 

" y, and 

! 

" ), and the 
base-10 logarithm of the state variable (

! 

log10" ) at each of the following nine 
stations on the fault: 

 
x (km) 0 0 0 9 12 12 −9 −12 −12 
y (km) 3 7.5 12 7.5 3 12 7.5 3 12 

 

 
 
Rupture Front Arrival Times: 
 

Report the rupture front arrival time at all points within the velocity-weakening 
portion of the fault 

! 

"W < x <W ,  0 < y <W( ) , where 

! 

W =15 km. The rupture 
front arrival time is defined as the time at which the slip velocity, V, first exceeds 
1 mm/s. 

 



Time Histories of Fields at Free Surface Stations (TPV102 only): 
 

Report the complete time histories from 

! 

t = 0 to 

! 

t =12 s of all components of 
displacement and particle velocity at each of the following six stations on the free 
surface: 

 
x (km) 0 0 12 12 −12 −12 
z (km) 9 −9 6 −6 6 −6 

 
 

 


