
SCEC Code Validation: TPV103 
Rate-and-State Friction, Slip Law, Strong Rate-Weakening 

Whole-Space 
 
Model Geometry: A planar fault lies in an isotropic, linear elastic whole-space. The 
material on either side of the fault is characterized by its density ρ, S-wave speed cs, and 
P-wave speed cp. The properties are given in the table below and are constant everywhere 
in the medium. 
 

ρ cs cp 
2670 kg/m3 3.464 km/s 6 km/s 

 
To simplify later expressions, a coordinate system will be adopted in which the fault is 
the plane 

 

z = 0, with the hypocenter located at 

 

x
0
,y

0( ) = 0,7.5 km( ) . This is shown in the 
figure below. The central portion of the fault, 

 

!W < x <W ,  0 < y <W , with 

 

W = 15 km, 
is velocity-weakening. A transition layer of width 

 

w = 3 km in which the frictional 
properties continuously change from velocity-weakening to velocity-strengthening 
surrounds the central velocity-weakening region of the fault. Outside of the transition 
region, the fault is velocity-strengthening.  
 

 
 
Friction Law: Let 

 

! = (! x,! y )  be the shear traction vector (specifically, the traction 
exerted by the positive side of the fault on the negative side), the magnitude of which is 

 

! = ! x
2

+ ! y
2 , and let σ be the normal stress acting on the fault, taken to be positive in 

compression. In terms of the components of the stress tensor 

 

! ij , 

 

!
x

= "
zx

, 

 

! y = " zy , and 

 

! = "!
zz

. Let 

 

V = (Vx,Vy )  be the slip velocity vector, the magnitude of which is 



 

V = Vx

2
+Vy

2 , and let 

 

! = (!x,!y )  be the slip vector. Slip is defined as the displacement 
discontinuity across the fault: 

 

!i = ui(x,y,0
+
) " ui(x,y,0

"
) i = x,y( ) , where 

 

ui x,y,z( ) is the 
displacement field. Likewise, 

 

Vi = vi(x,y,0
+
) ! vi(x,y,0

!
) i = x,y( ) , where 

 

vi x,y,z( )  is the 
particle velocity. Finally, let ψ be the state variable on the fault. The shear traction is 
always equal to the shear strength of the fault, which is the product of the friction 
coefficient and normal stress: 
 

 

 

! = f V ,"( )# .     (1) 
 
The friction coefficient is a function of V and ψ: 
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The state variable evolves according to the equation 
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fss(V) is the steady state friction coefficient, which depends on V and the friction law 
parameters f0, V0, a, b, fw, and Vw: 
 

   fss V( ) = fw +
fLV V( ) ! fw

1+ V Vw( )
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with a low-velocity steady state friction coefficient 
 
   

 

fLV V( ) = f
0
! b ! a( ) ln V V

0( ).   (6) 
 
The slip velocity vector points in the direction of the shear traction vector: 
 
    ! ! = V V .     (7) 
 
The friction law parameters are given in the table below. Note that with the exception of 
a and Vw, they are uniform on the fault. 
 

f0 V0 a(x,y) b L fw Vw(x,y) 
0.6 10-6 m/s 0.01+Δa(x,y) 0.014 0.4 m 0.2 0.1 m/s+ΔVw (x,y) 

 



To stop the rupture, the friction law changes from velocity-weakening in the 
rectangular interior region of the fault to velocity-strengthening sufficiently far outside 
this region. The transition occurs smoothly within a transition layer of width 

 

w = 3 km. 
Outside the transition layer, the fault is made velocity-strengthening by increasing a by 

 

!a
0

= 0.01 and Vw by !Vw0 = 0.9 . 
 The changes in a and Vw, which are added to the values of a and Vw in the 
velocity-weakening interior of the fault, are 
 

 

!a(x,y) = !a
0
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!Vw (x, y) = !Vw0 1" B x;W ,w( )B y " y0;W 2,w( )#$ %& ,  (9) 
 
in which 
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is a mathematically smooth version of the boxcar function (meaning that B and all of its 
derivatives are continuous). 
 
Initial Conditions: At 

 

t = 0, the fault is everywhere sliding in the horizontal direction 
with initial velocity 

 

V =V
ini

. The initial shear stress on the fault, which is also horizontal, 
is 

 

!
ini

, the normal stress is 

 

!
ini

, and the initial value of the state variable is 

 

!ini x,y( ) . Note 
that the initial state variable is spatially variable, but the initial velocity and stresses are 
uniform. This is because the initial conditions must be self-consistent, in the sense that 
they must satisfy (1) and (2). Since the friction law parameter a is spatially variable, then, 
in order for the initial velocity and stress fields to be uniform, 

 

!
ini

 must also be spatially 
variable. The values of the initial conditions are given in the table below. 
 

Vini τini σini ψini(x,y) 
10-16 m/s 40 MPa 120 MPa 0.563591842632738 + 

Δψ(x,y) 
 
From equations (1) and (2), it follows that 
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In the medium surrounding the fault, the only nonzero stresses are the horizontal shear 
stress and the normal stress component acting on the fault; these values are uniform and 
identical to those on the fault: 



 

 

! zx (x,y,z) = " ini  and  ! zz(x,y,z) = #! ini  at  t = 0 .   (12) 
 
The medium is initially moving with equal and opposite horizontal velocities of 

 

V
ini
2  on 

the two sides of the fault: 
 

 

vx (x,y,z) =
Vini 2, z > 0

!Vini 2, z < 0
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$ 

   at  t = 0 .    (13) 

 
Displacement in the medium and slip on the fault are measured from zero at 

 

t = 0. 
 
Nucleation Method: Starting at 

 

t = 0, rupture is nucleated by imposing a horizontal 
shear traction perturbation (i.e., a perturbation to 

 

!
x
) that depends on both space and 

time. The particular form is such that the perturbation smoothly grows from zero to its 
maximum amplitude 

 

!"
0
 over a finite time interval T, and is confined to a finite region 

of the fault of radius R. The perturbation is mathematically smooth in time and space 
(i.e., the function and all derivatives are continuous). Specifically, the perturbation is 
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in which 
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and 
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The perturbation is radially symmetric, with the radial distance away from the hypocenter 
along the fault given by 

 

r = x ! x
0( )
2

+ y ! y
0( )
2 . The nucleation parameters are given 

in the table below. 
 

 

!"
0
 R T (x0,y0) 

45 MPa 3 km 1 s (0,7.5 km) 
  



 
SCEC Code Validation: TPV104 

Rate-and-State Friction, Slip Law, Strong Rate-Weakening 
Half-Space 

 
This problem is identical to TPV103, but the fault is embedded in a half-space rather than 
a whole-space. In terms of the coordinate system defined for TPV103, the half-space is 
the region 

 

y > 0 . The plane 

 

y = 0  is a free surface. 



SCEC Code Validation: TPV103 and TPV104 
Rate-and-State Friction, Required Output 

 
For both TPV103 and TPV104, the following data should be submitted to the code 
validation website (where instructions for the data file formats can be found): 
 
Time Histories of Fields at Fault Stations: 
 

Report the complete time histories from 

 

t = 0 to 

 

t = 12 s of both components of 
slip (

 

!
x
 and 

 

!y ) and slip velocity (

 

V
x
 and 

 

Vy ), all tractions (

 

!
x
,

 

! y, and 

 

! ), and the 
state variable (

 

! ) at each of the following nine stations on the fault: 
 

x (km) 0 0 0 9 12 12 −9 −12 −12 
y (km) 3 7.5 12 7.5 3 12 7.5 3 12 

 

 
 
Rupture Front Arrival Times: 
 

Report the rupture front arrival time at all points within the velocity-weakening 
portion of the fault 

 

!W < x <W ,  0 < y <W( ) , where 

 

W = 15 km. The rupture 
front arrival time is defined as the time at which the slip velocity, V, first exceeds 
1 mm/s. 

 



Time Histories of Fields at Free Surface Stations (TPV104 only): 
 

Report the complete time histories from 

 

t = 0 to 

 

t = 12 s of all components of 
displacement and particle velocity at each of the following six stations on the free 
surface: 

 
x (km) 0 0 12 12 −12 −12 
z (km) 9 −9 6 −6 6 −6 

 
 

 


