SCEC Code Validation: TPV103 Rate-and-State Friction, Slip Law, Strong Rate-Weakening Whole-Space

Model Geometry: A planar fault lies in an isotropic, linear elastic whole-space. The material on either side of the fault is characterized by its density ρ , *S*-wave speed c_s , and *P*-wave speed c_p . The properties are given in the table below and are constant everywhere in the medium.

ρ	\mathcal{C}_{S}	\mathcal{C}_p	
2670 kg/m^3	3.464 km/s	6 km/s	

To simplify later expressions, a coordinate system will be adopted in which the fault is the plane z=0, with the hypocenter located at $(x_0, y_0) = (0,7.5 \text{ km})$. This is shown in the figure below. The central portion of the fault, -W < x < W, 0 < y < W, with W = 15 km, is velocity-weakening. A transition layer of width w = 3 km in which the frictional properties continuously change from velocity-weakening to velocity-strengthening surrounds the central velocity-weakening region of the fault. Outside of the transition region, the fault is velocity-strengthening.

Friction Law: Let $\mathbf{\tau} = (\tau_x, \tau_y)$ be the shear traction vector (specifically, the traction exerted by the positive side of the fault on the negative side), the magnitude of which is $\tau = \sqrt{\tau_x^2 + \tau_y^2}$, and let σ be the normal stress acting on the fault, taken to be positive in compression. In terms of the components of the stress tensor σ_{ij} , $\tau_x = \sigma_{zx}$, $\tau_y = \sigma_{zy}$, and $\sigma = -\sigma_{zz}$. Let $V = (V_x, V_y)$ be the slip velocity vector, the magnitude of which is

 $V = \sqrt{V_x^2 + V_y^2}$, and let $\boldsymbol{\delta} = (\delta_x, \delta_y)$ be the slip vector. Slip is defined as the displacement discontinuity across the fault: $\delta_i = u_i(x, y, 0^+) - u_i(x, y, 0^-)$ (i = x, y), where $u_i(x, y, z)$ is the displacement field. Likewise, $V_i = v_i(x, y, 0^+) - v_i(x, y, 0^-)$ (i = x, y), where $v_i(x, y, z)$ is the particle velocity. Finally, let $\boldsymbol{\psi}$ be the state variable on the fault. The shear traction is always equal to the shear strength of the fault, which is the product of the friction coefficient and normal stress:

$$\tau = f(V, \psi)\sigma \,. \tag{1}$$

The friction coefficient is a function of V and ψ .

$$f(V,\psi) = a \operatorname{arcsinh}\left[\frac{V}{2V_0} \exp\left(\frac{\psi}{a}\right)\right].$$
 (2)

The state variable evolves according to the equation

$$\frac{d\psi}{dt} = -\frac{V}{L} \left[\psi - \psi_{ss} \left(V \right) \right],\tag{3}$$

$$\psi_{ss}(V) = a \ln\left\{\frac{2V_0}{V}\sinh\left[\frac{f_{ss}(V)}{a}\right]\right\}.$$
(4)

 $f_{ss}(V)$ is the steady state friction coefficient, which depends on V and the friction law parameters f_0 , V_0 , a, b, f_w , and V_w :

$$f_{ss}(V) = f_{w} + \frac{f_{LV}(V) - f_{w}}{\left[1 + \left(V/V_{w}\right)^{8}\right]^{1/8}}$$
(5)

with a low-velocity steady state friction coefficient

$$f_{LV}(V) = f_0 - (b - a)\ln(V/V_0).$$
 (6)

The slip velocity vector points in the direction of the shear traction vector:

$$\tau/\tau = V/V. \tag{7}$$

The friction law parameters are given in the table below. Note that with the exception of a and V_w , they are uniform on the fault.

f_0	V_0	a(x,y)	b	L	$f_{\rm w}$	$V_{\rm w}(x,y)$
0.6	10 ⁻⁶ m/s	$0.01 + \Delta a(x,y)$	0.014	0.4 m	0.2	$0.1 \text{ m/s}+\Delta V_{\text{w}}(x,y)$

To stop the rupture, the friction law changes from velocity-weakening in the rectangular interior region of the fault to velocity-strengthening sufficiently far outside this region. The transition occurs smoothly within a transition layer of width w = 3 km. Outside the transition layer, the fault is made velocity-strengthening by increasing *a* by $\Delta a_0 = 0.01$ and V_w by $\Delta V_{w0} = 0.9$.

The changes in a and V_w , which are added to the values of a and V_w in the velocity-weakening interior of the fault, are

$$\Delta a(x,y) = \Delta a_0 [1 - B(x;W,w)B(y - y_0;W/2,w)]$$
(8)

$$\Delta V_{w}(x,y) = \Delta V_{w0} \Big[1 - B(x;W,w) B(y - y_{0};W/2,w) \Big],$$
(9)

in which

$$B(x;W,w) = \begin{cases} 1, & |x| \le W \\ \frac{1}{2} \left[1 + \tanh\left(\frac{w}{|x| - W - w} + \frac{w}{|x| - W}\right) \right], & W < |x| < W + w \\ 0, & |x| \ge W + w \end{cases}$$
(10)

is a mathematically smooth version of the boxcar function (meaning that *B* and all of its derivatives are continuous).

Initial Conditions: At t = 0, the fault is everywhere sliding in the horizontal direction with initial velocity $V = V_{ini}$. The initial shear stress on the fault, which is also horizontal, is τ_{ini} , the normal stress is σ_{ini} , and the initial value of the state variable is $\psi_{ini}(x,y)$. Note that the initial state variable is spatially variable, but the initial velocity and stresses are uniform. This is because the initial conditions must be self-consistent, in the sense that they must satisfy (1) and (2). Since the friction law parameter *a* is spatially variable, then, in order for the initial velocity and stress fields to be uniform, ψ_{ini} must also be spatially variable. The values of the initial conditions are given in the table below.

V_{ini}	$ au_{ini}$	σ_{ini}	$\psi_{ini}(x,y)$
10^{-16} m/s	40 MPa	120 MPa	0.563591842632738 +
			$\Delta \psi(x,y)$

From equations (1) and (2), it follows that

$$\psi_{ini}(x,y) = a \ln \left[\frac{2V_0}{V_{ini}} \sinh \left(\frac{\tau_{ini}}{a\sigma_{ini}} \right) \right].$$
(11)

In the medium surrounding the fault, the only nonzero stresses are the horizontal shear stress and the normal stress component acting on the fault; these values are uniform and identical to those on the fault:

$$\sigma_{zx}(x,y,z) = \tau_{ini} \text{ and } \sigma_{zz}(x,y,z) = -\sigma_{ini} \text{ at } t = 0.$$
(12)

The medium is initially moving with equal and opposite horizontal velocities of $V_{ini}/2$ on the two sides of the fault:

$$v_{x}(x,y,z) = \begin{cases} V_{ini}/2, & z > 0\\ -V_{ini}/2, & z < 0 \end{cases} \text{ at } t = 0.$$
(13)

Displacement in the medium and slip on the fault are measured from zero at t = 0.

Nucleation Method: Starting at t=0, rupture is nucleated by imposing a horizontal shear traction perturbation (i.e., a perturbation to τ_x) that depends on both space and time. The particular form is such that the perturbation smoothly grows from zero to its maximum amplitude $\Delta \tau_0$ over a finite time interval *T*, and is confined to a finite region of the fault of radius *R*. The perturbation is mathematically smooth in time and space (i.e., the function and all derivatives are continuous). Specifically, the perturbation is

$$\Delta \tau(x, y, t) = \Delta \tau_0 F\left(\sqrt{(x - x_0)^2 + (y - y_0)^2}\right) G(t),$$
(14)

in which

$$F(r) = \begin{cases} \exp\left(\frac{r^2}{r^2 - R^2}\right), \ r < R\\ 0, \qquad r \ge R \end{cases}$$
(15)

and

$$G(t) = \begin{cases} \exp\left[\frac{(t-T)^{2}}{t(t-2T)}\right], \ 0 < t < T\\ 1, \ t \ge T \end{cases}$$
(16)

The perturbation is radially symmetric, with the radial distance away from the hypocenter along the fault given by $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$. The nucleation parameters are given in the table below.

Δau_{0}	R	Т	(x_0, y_0)
45 MPa	3 km	1 s	(0,7.5 km)

SCEC Code Validation: TPV104 Rate-and-State Friction, Slip Law, Strong Rate-Weakening Half-Space

This problem is identical to TPV103, but the fault is embedded in a half-space rather than a whole-space. In terms of the coordinate system defined for TPV103, the half-space is the region y > 0. The plane y = 0 is a free surface.

SCEC Code Validation: TPV103 and TPV104 Rate-and-State Friction, Required Output

For both TPV103 and TPV104, the following data should be submitted to the code validation website (where instructions for the data file formats can be found):

Time Histories of Fields at Fault Stations:

Report the complete time histories from t=0 to t=12 s of both components of slip (δ_x and δ_y) and slip velocity (V_x and V_y), all tractions (τ_x , τ_y , and σ), and the state variable (ψ) at each of the following nine stations on the fault:

Rupture Front Arrival Times:

Report the rupture front arrival time at all points within the velocity-weakening portion of the fault (-W < x < W, 0 < y < W), where W = 15 km. The rupture front arrival time is defined as the time at which the slip velocity, *V*, first exceeds 1 mm/s.

Time Histories of Fields at Free Surface Stations (TPV104 only):

Report the complete time histories from t=0 to t=12 s of all components of displacement and particle velocity at each of the following six stations on the free surface:

<i>x</i> (km)	0	0	12	12	-12	-12
<i>z</i> (km)	9	-9	6	-6	6	-6

