EqSim

Brad Aagaard

Author Brad Aagaard

Current version 0.6.6

Language C++

Discretization Tetrahedral cells with linear basis functions provide second-order accuracy in space and time. Tetrahedral cells permit an unstructured finite-element mesh that conforms to complex, nonplanar geometry.

Parallel implementation MPI and MPI I/O

Numerical damping The solution technique does not include artificial damping to suppress numerical noise.

Fault implementation Vertices on the fault have 6 degrees of freedom (3 for motion of the two sides of the fault together and 3 for relative motion across the fault). Kinematic ruptures specify the slip using the relative degrees of freedom; spontaneous ruptures specify a constitutive model controlling the behavior of the relative degrees of freedom.

Bulk constitutive model Isotropic linear elastic

- **Boundary conditions** Dirichlet (prescribed displacement) and absorbing boundaries (via linear viscous dampers) in addition to natural (traction free) boundaries
- **Other features** Support for simple static simulations and geographic coordinate systems. Support for the getting material properties from the SCEC CVM and the USGS Bay Area Velocity Model.
- **Documentation** Source code is documented via Doxygen. There is no user manual.

Availability EqSim is not available for downloading.

Development plans EqSim is no longer being actively developed. Current development is focused on PyLith, a finite-element code for quasi-static and dynanamic modeling of earthquake faulting. PyLith is part of the Computational Infrastructure for Geodynamics (CIG) project. Binaries, source code, and documentation are available from http://www.geodynamics.org. PyLith supports multiple cell types in 1-D, 2-D, and 3-D. Quasi-static and kinematic ruptures are implemented. A release with an implementation of fault constitutive models for spontaneous rupture simulations is targeted for late 2008.

REFERENCES

- Aagaard, B., G. Anderson, and K. Hudnut (2004, December). Dynamic rupture modeling of the transition from thrust to strike-slip motion in the 2002 Denali Fault, Alaska, earthquake. *Bulletin of the Seismological Society of America* 94(6B), S190–S201.
- Aagaard, B. T. (1999). Finite-element simulations of earthquakes. Technical Report 99-03, California Institute of Technology, Earthquake Engineering Research Laboratory, Pasadena, CA.
- Aagaard, B. T., T. M. Brocher, D. Dolenc, D. Dreger, R. W. Graves, S. Harmsen, S. Hartzell, S. Larsen, K. McCandless, S. Nilsson, N. A. Petersson, A. Rodgers, B. Sjögreen, and M. L. Zoback (2008). Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events. *Bulletin of the Seismological Society of America*. in press.
- Aagaard, B. T., T. M. Brocher, D. Dolenc, D. Dreger, R. W. Graves, S. Harmsen, S. Hartzell, S. Larsen, and M. L. Zoback (2008). Ground motion modeling of the 1906 San Francisco earthquake I: Validation using the 1989 Loma Prieta earthquake. *Bulletin of the Seismological Society of America*. in press.
- Aagaard, B. T., J. F. Hall, and T. H. Heaton (2001, May). Characterization of near-source ground motions with earthquake simulations. *Earthquake Spectra* 17(2), 177–207.

- Aagaard, B. T., J. F. Hall, and T. H. Heaton (2002, December). Effects of fault dip and slip rake on near-source ground motions: Why the 1999 M7.6 Chi-Chi, Taiwan, earthquake was relatively mild. Technical Report 2002/12, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
- Aagaard, B. T., J. F. Hall, and T. H. Heaton (2004, February). Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake. *Bulletin of the Seismological Society of America* 94(1), 155–170.
- Aagaard, B. T. and T. H. Heaton (2004, December). Near-source ground motions from simulations of sustained intersonic and supersonic fault rupture. *Bulletin of the Seismological Society of America* 94(6), 2064–2078.
- Aagaard, B. T. and T. H. Heaton (2008). Friction model ingredients for earthquake ruptures with self-consistent stress fields. *Journal of Geophysical Research*. in press.
- Anderson, G., B. Aagaard, and K. Hudnut (2003, December 12). Fault interactions and large complex earthquakes in the Los Angeles area. Science 302(5652), 1946–1949.
- Smith, D. E., B. T. Aagaard, and T. H. Heaton (2005, June). Teleseismic body waves from dynamically rupturing shallow thrust faults: Are they opaque for surface reflected phases? *Bulletin of the Seismological Society of America* 95(3), 800–817.