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S U M M A R Y
We apply the method of support operators (SOM) to solve the 3-D, viscoelastic equations
of motion for use in earthquake simulations. SOM is a generalized finite-difference method
that can utilize meshes of arbitrary structure and incorporate irregular geometry. Our imple-
mentation uses a 3-D, logically rectangular, hexahedral mesh. Calculations are second-order
in space and time. A correction term is employed for suppression of spurious zero-energy
modes (hourglass oscillations). We develop a free surface boundary condition, and an absorb-
ing boundary condition using the method of perfectly matched layers (PML). Numerical tests
using a layered material model in a highly deformed mesh show good agreement with the
frequency-wavenumber method, for resolutions greater than 10 nodes per wavelength. We also
test a vertically incident P wave on a semi-circular canyon, for which results match boundary
integral solutions at resolutions greater that 20 nodes per wavelength. We also demonstrate
excellent parallel scalability of our code.

Key words: Numerical solutions; Earthquake ground motions; Computational seismology;
Wave propagation.

1 I N T RO D U C T I O N

The finite-difference method (FDM) has been extensively used for

modelling 3-D seismic wave propagation and rupture-dynamics

problems. The fourth-order staggered-grid scheme, nicely summa-

rized by Graves (1996), is particularly well suited for large-scale,

high-resolution problems because it is accurate, efficient and read-

ily parallelized for multiprocessor execution. Recent applications

include basin wave propagation by Olsen et al. (2006) and rupture

dynamics by Dalguer & Day (2007).

Many such FDM implementations, however, are restricted to rec-

tilinear discretizations of the problem domain, which in some cases

leads to a poor approximation of problem geometry. Surface topog-

raphy, for example, may be neglected. Ma et al. (2007) show with

finite-element simulations that the topography of the San Bernardino

Mountains may disrupt surface waves generated on the adjacent San

Andreas Fault, effectively shielding Los Angeles. The restriction to

rectilinear meshes also represents a severe constraint on dynamic

rupture simulations, usually restricting consideration to planar, ver-

tical faults that coincide with grid planes. This constraint can be

relaxed, as in Cruz-Atienza (2006), for example, but at a substantial

sacrifice of accuracy. Alternatively, a coordinate mapping can be in-

troduced to conform the FDM grid to a non-planar fault geometry,

as in Kase & Day (2006), for example.

A variety of approaches have been taken to enable non-rectangular

geometry in earthquake simulations. To cite a few examples,

Aagaard (1999) used the finite-element method (FEM) on tetrahe-

dral meshes; Oglesby (1999), and Oglesby et al. (2000) employed

FEM on hexahedral meshes; Komatitsch & Tromp (1999) used the

spectral element method and Dumbser & Kas̈er (2006) used a high-

order discontinuous Galerkin method.

We apply the method of support-operators (SOM) developed by

Samarskii et al. (1981, 1982) and Shashkov (1996). SOM is a general

scheme for discretizing the differential form of partial differential

equations. Many simple FDMs and FEMs are special cases of SOM.

The approach constructs discrete analogues of continuum derivative

operators that satisfy important integral identities, such as the ad-

joint relation between gradient and divergence. SOM brings to an

FDM-type formulation the FEM advantage that energy is conserved

in the semi-discrete equations (i.e. spatially discrete but before time

discretization), as an immediate consequence of the adjoint rela-

tions. Likewise, the adjoint relations ensure that seismic reciprocity

is satisfied by the fully discrete equations.

SOM may employ structured or unstructured meshes, and be

extended to high order of accuracy. We develop the theory for ar-

bitrary order on structured meshes, and implement the second or-

der case for our numerical algorithm. Rojas et al. (2007) use a

related finite-difference formulation to model earthquake rupture

dynamics in 2-D. They implement a fourth-order scheme, but re-

strict it to Cartesian meshes. Their approach is similar to ours, in

that they form the difference operators using the adjoint relations,

but differs from our SOM formulation in the nature of the mesh em-

ployed (they use a staggered mesh of the form used in, e.g. Levander

1988).
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This paper begins with a derivation of 3-D SOM spatial difference

operators, followed by a comparison to the related method of one-

point quadrature. A full listing of both types of operators is located

in the Appendix. We then layout the numerical algorithm for solving

wave equations with hourglass corrections, and perfectly matched

layer (PML) absorbing boundaries. Presented next are numerical

tests using a layered model, that is verified against wavenumber

integration solutions, and a semi-circular canyon model that is ver-

ified against boundary integral solutions. Finally, we examine the

parallel processing capability of our algorithm. In the concluding

discussion, we look at potential enhancements to, and applications

of our method.

2 T H E S U P P O RT O P E R AT O R M E T H O D

The linearized equations of motion for isotropic viscoelastic motion

are

gi j = ∂ j (ui + γ vi ), (1)

σi j = λ δi j gkk + μ(gi j + g ji ), (2)

ai = 1

ρ
∂ jσi j , (3)

v̇i = ai , (4)

u̇i = vi , (5)

where σ is the stress tensor, u and v are displacement and velocity

vectors, ρ is density, λ and μ are elastic moduli and γ is viscosity.

The Kelvin–Voigt model of viscosity used here is not of a realistic

form for seismological problems, but is included in the formula-

tion in anticipation of future applications to non-linear problems

(e.g. rupture dynamics) where viscous losses may be needed for nu-

merical regularization. Realistic attenuation can be readily added by

the memory-variable technique introduced by Day & Minster (1984)

and since refined by various authors (Moczo et al. 2006, provide a

comprehensive review). All variables are functions of position x,

while σ, u and v are time dependent as well. It is generally not pos-

sible to find analytical solutions to this system of equations, so we

must rely on numerical methods to find approximate solutions.

We first discretize the field variables and material constants onto

a hexahedral mesh that has a logically rectangular structure. We

adapt the general formalism of Shashkov (1996) to the equations of

3-D elastodynamics. Following that general formalism, we define

two types of spatial discretizations on the mesh. Nodal functions are

defined at the node points. We denote the space of nodal functions by

H N . Cell functions represent average function values over element

volumes. We denote the space of cell functions by H C . Mesh node

points are located in the 3-D logical structure by their indices j, k
and l, and each interior node is shared by exactly eight elements.

For the structured mesh there is a mapping from Cartesian space to

logical space, x → ξ (Fig. 1) and the nodal coordinates X jkl ∈ H N

map to the logical coordinates Ξjkl.

We will need two types of discrete difference operators, one that

operates on nodal functions and one that operates on cell functions.

We begin with the derivation of the first one: an operator that com-

putes the derivative of a nodal function with a cell function result.

Consider the nodal discretization of an unknown function: Fjkl ∈
H N . Polynomial interpolation of the discrete function Fjkl can be

used to construct a continuous function f (ξ) that is an approxima-

x

y

z ξ

η

ζ

Figure 1. Map of Cartesian space to logical space.
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Figure 2. Stencil node and cell indexing for cubic (n = 3) interpolation in

the shaded cell (1,1). For simplicity only two dimensions are shown instead

of three.

tion to the original unknown function. Provided the original function

is smooth and well behaved, the error of approximation depends on

the polynomial degree n.

We restrict the interpolation scheme such that, for a particular

cell, f (ξ) depends only on the nodes in the immediate vicinity. This

group of nodes is called the stencil, and is diagrammed in Fig. 2.

The stencil nodes have the indices j , k, l = 0, . . . , n and the stencil

cells have the indices j , k, l = 0, . . . , n − 1. The value of n must be

odd to insure logical symmetry about the central cell. The index of

the central cell is (m, m, m) where m = (n − 1)/2.

The interpolation function is given by

f (ξ) =
n∑

j,k,l=0

N jkl (ξ)Fjkl , (6)

where the shape functions Njkl(ξ) are formed from Lagrange inter-

polation polynomials

N jkl (ξ) = �n
j (ξ )�n

k (η)�n
l (ζ ), (7)

and the Lagrange polynomials of degree n are given by

�n
j (ξ ) =

n∏
i=0
i �= j

ξ − �i

� j − �i
. (8)

Evaluating the shape functions at the nodes gives

N jkl (Ξpqr ) = δ j pδkqδlr , (9)

so evaluating the interpolation function at the mesh nodes returns

exactly the discrete function values

f (Ξ jkl ) = Fjkl . (10)
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Repeating the interpolation procedure for the nodal coordinates Xjkl

results in a mapping from logical coordinates to Cartesian coordi-

nates,

x(ξ) =
n∑

j,k,l=0

N jkl (ξ)X jkl . (11)

We can use this mapping to find the gradient of f by solving the

system of equations

∂ f

∂ξ
= (∇ f ) · ∂x

∂ξ
,

[
∂ f

∂ξ

∂ f

∂η

∂ f

∂ζ

]
=

[
∂ f

∂x

∂ f

∂y

∂ f

∂z

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The matrix J = ∂x/∂ξ is known as the Jacobian of the mapping.

Columns of J are tangent vectors to the logical coordinate system.

The determinant of the Jacobian J = |J| relates volume elements

between the logical and Cartesian coordinate systems

dx dy dz = J dξ dη dζ. (13)

The inverse of the Jacobian matrix is

J−1 = ∂ξ

∂x
= 1

J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣
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∂ξ

∣∣∣∣∣
∣∣∣∣∣

∂z
∂ζ

∂x
∂ζ

∂z
∂ξ

∂x
∂ξ

∣∣∣∣∣
∣∣∣∣∣

∂x
∂ζ

∂y
∂ζ

∂x
∂ξ

∂y
∂ξ

∣∣∣∣∣∣∣∣∣∣
∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η

∣∣∣∣∣
∣∣∣∣∣

∂z
∂ξ

∂x
∂ξ

∂z
∂η

∂x
∂η

∣∣∣∣∣
∣∣∣∣∣

∂x
∂ξ

∂y
∂ξ
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∂y
∂η

∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

Rows of JJ−1 are surface area vectors dS for surfaces of constant

ξ , η or ζ , and are formed by cross-products of the tangent vectors.

Solving (12) gives the gradient of f :

∇ f = ∂ f

∂ξ
· J−1. (15)

Because we seek the average gradient over the element volume, we

will use the approximation

∇ f ≈ 1

V

∫
V

∇ f dV, (16)

and define discrete operators D x , D y and Dz :

Di F ≡
∫

V C

∂ f

∂xi
dV, (17)

Di : H N → H C , (18)

where V C is the volume of the central cell enclosed by the logical

coordinates

ξm < ξ < ξm+1,

ηm < η < ηm+1,

ζm < ζ < ζm+1. (19)

Substituting (13), (15) and (19) into (17) gives

x̂Dx F + ŷDy F + ẑDz F =
∫

ζ

∫
η

∫
ξ

∂ f

∂ξ
· J−1 J dξ dη dζ. (20)

A computer algebra system is helpful for solving this integral.

The remainder of this paper is concerned with the 3-D, linear case

(n = 1). The resulting expressions for Di are rather complex and

are not available elsewhere, so we tabulate them in the Appendix. If

elements are restricted in shape to rectangular parallelepipeds, the

operators simplify to

(Dx F)000 = 1

4
(Z1 − Z0)(Y1 − Y0)

(F111 + F100 − F010 − F001

−F000 − F011 + F101 + F110), (21)

(Dy F)000 = 1

4
(X1 − X0)(Z1 − Z0)

(F111 − F100 + F010 − F001

−F000 + F011 − F101 + F110) (22)

and

(Dz F)000 = 1

4
(Y1 − Y0)(X1 − X0)

(F111 − F100 − F010 + F001

−F000 + F011 + F101 − F110), (23)

each of which is recognizable as the average of four separate finite-

difference operations along the cell edges.

Now that we have the difference operator Di that operates on the

nodal functions, the next task is to build a complementary difference

operator that operates on a cell function and returns a nodal function:

Di : H C → H N . (24)

We will rely on the previously derived operators Di and the adjoint

relation between gradient and divergence. The goal is to ensure

global conservation of the numerical scheme. This is the guiding

principle of SOM and other mimetic methods. They attempt to

‘mimic’ fundamental conservation laws of the continuum. In this

case Di is called the natural operator and Di is called the support

operator.

Applying the divergence theorem to the product f w gives∫
V

(∇ f ) · w dV +
∫

V
f (∇ · w) dV =

∫
S

f w · dS. (25)

When the normal component of w at the boundary surface is 0,∫
V

f ∇ · w dV = −
∫

V
(∇ f ) · w dV, (26)

which expresses the fact that gradient and divergence are adjoint

operators. The adjoint relationship has the discrete analogue

3,p−1,q−1,r−1∑
i, j,k,l=0

(Di F) jkl (Wi ) jkl = −
3,p,q,r∑

i, j,k,l=0

Fjkl (Di Wi ) jkl , (27)

where W jkl ∈ H C is a cell-valued vector function. Until this point

we have considered only the local vicinity of the difference operator.

Here we broaden the scope to the global problem domain, where the

mesh size is p × q × r.

Inserting DiF into the left-hand side of (27) results in a summa-

tion factored in terms of common Wjkl values. We can refactor this

summation in terms of common Fjkl. Equating this result to the right

hand side of (27), we can write the expressions for Di as listed in
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the Appendix. On a rectangular mesh the equations simplify to

(Dx W)111 = 1

4
(Z2 − Z1)[(Y2 − Y1)(W111 − W011)

+ (Y1 − Y0)(W101 − W001)]

+1

4
(Z1 − Z0)[(Y2 − Y1)(W110 − W010)

+ (Y1 − Y0)(W100 − W000)], (28)

(DyW)111 = 1

4
(X2 − X1)[(Z2 − Z1)(W111 − W101)

+ (Z1 − Z0)(W110 − W100)]

+1

4
(X1 − X0)[(Z2 − Z1)(W011 − W001)

+ (Z1 − Z0)(W010 − W000)] (29)

and

(DzW)111 = 1

4
(Y2 − Y1)[(X2 − X1)(W111 − W110)

+ (X1 − X0)(W011 − W010)]

+1

4
(Y1 − Y0)[(X2 − X1)(W101 − W100)

+ (X1 − X0)(W001 − W000)]. (30)

At the boundaries, certain terms in Di drop out. For example at the

boundary j = 0, (28), (29) and (30) reduce to

(Dx W)011 = 1

4
(Z2 − Z1)[(Y2 − Y1)W011

+ (Y1 − Y0)W001]

+1

4
(Z1 − Z0)[(Y2 − Y1)W010

+ (Y1 − Y0)W000], (31)

(DyW)011 = 1

4
(X2 − X1)[(Z2 − Z1)(W011 − W001)

+ (Z1 − Z0)(W010 − W000)] (32)

and

(DzW)011 = 1

4
(X2 − X1)[(Y2 − Y1)(W011 − W010)

+ (Y1 − Y0)(W001 − W000)]. (33)

Accounting for each face, edge and corner of the mesh, there exist 48

different boundary operators forDi . The application of the boundary

operators is simplified in practice by using a ghost cell technique.

We extend the mesh outside of the boundaries with ‘ghost’ cells, and

in those cells Wjkl is always zero. Applying the interior operators

(28), (29) and (30) to the expanded mesh reproduces the boundary

operators appropriately.

We can now approximate the partial derivative of F with

(Di F) jkl

V C
jkl

, (34)

and approximate the partial derivative of W with

(Di W) jkl

V N
jkl

, (35)

where V C
jkl is the cell volume and V N

jkl is the nodal volume. The cell

volume can be found by noting that∫
V

∂xi

∂xi
dV = V, (36)

and differencing any one of the nodal coordinates

V C
jkl = (Dx X ) jkl = (DyY ) jkl = (Dz Z ) jkl . (37)

The nodal volume is then found by averaging the surrounding eight

cell volumes

V N
000 = 1

8

(
V C

000 + V C
011 + V C

101 + V C
110

+ V C
111 + V C

100 + V C
010 + V C

001

)
. (38)

3 O N E - P O I N T Q UA D R AT U R E

The gradient operator Di is defined in eq. (17) by exactly integrating

the integral (16). An alternative method is to approximate the inte-

gral with numerical quadrature. For one-point quadrature we simply

evaluate eq. (15) at the centre of the stencil

Di F ≡ ∂ f

∂xi

∣∣∣∣
ξ=(ξm+ξm+1)/2

. (39)

The resulting operators, eqs (A7)–(A12) listed in the Appendix,

offer some computational savings. One-point quadrature has been

frequently applied to seismic problems (see e.g. Day et al. 2005;

Ma & Liu 2006). The operator Di is often called the ‘B matrix’ in

FEM literature. Goudreau & Hallquist (1982) found that for their

applications, exactly integrated elements perform no better than one-

point quadrature, and therefore, the extra computational expense is

not justified. However, this may not be true for all applications. With

non-parallelepiped elements, one-point quadrature fails the patch

test. One consequence of this is that rigid body motion can lead to

non-zero stress. To illustrate, from eqs (A7)–(A11), the one-point

quadrature gradient DiF clearly evaluates to zero when F is uniform.

However, the divergence Di W, listed in eqs (A8)–(A12), does not

in general evaluate to zero when W is uniform. The non-physical

consequence is that energy can enter the system due simply to the

shape of the mesh. Conversely, the exactly integrated operators, eqs

(A1) through (A6) always evaluate to zero for uniform fields F and

W. We have not established whether, in practice, this is an important

issue for seismic wave simulations, but violation of conservation of

energy is clearly undesirable and should be avoided if possible.

The exactly integrated elements require roughly twice as many

floating point operations to compute. However, the difference can

be negated, and additional computational efficiency achieved, by

holding the operators in memory rather than calculating them on-

the-fly. One can store Di in a memory array, and Di can be had

directly from Di via the adjoint relation. Storage of Di requires

24 memory variables per element, while storage of X for on-the-

fly operators requires three variables per element. The 21 variable

increase roughly doubles the amount of storage needed overall, while

the number of floating point operations is reduced by a factor of 6

for the complete algorithm.

Tests of our code (summarized in Table 1), under ideal condi-

tions with no parallel processing or file output, show a 25 per cent

Table 1. Resource usage per node per time time step for different operators.

Numbers are for the complete wave simulation algorithm.

Floating Memory Normalized

Operator type pt. ops. variables run-time

Exactly integrated 3380 23 3.56

One-point quadrature 1688 23 2.67

Stored operators 518 44 1.27

Rectangular 446 20 1.00
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reduction in runtime for one-point quadrature, and a factor of 3 re-

duction for pre-computed operators. This is only half of the speedup

expected considering only floating point operations. However, mem-

ory access speed can be an equally important factor on architectures

with fast CPUs. Parallel processing overhead and file access reduce

even further the relative speed gains. Due to the modest performance

penalty, and the potential for removing that penalty altogether by

pre-computed operators, we prefer the exactly integrated elements.

4 N U M E R I C A L A L G O R I T H M

We can now build an explicit time stepping scheme by discretizing

eqs (1)–(5). The continuous field variables are replaced with discrete

variables of the same name. On the nodes we have (u, v, a, ρ, γ, g) ∈
H N , and on the cells we have (σ,λ,μ)∈ H C . Time is discretized with

constant spacing 
t. Spatial derivative are approximated with the

operators (34) and (35) and time derivatives are approximated with

with second-order centred differences. The time index is indicated

by a superscript, and for clarity, spatial indices are omitted in the

discrete equations

gi j = D j

(
un

i + γ v
n−1/2
i

)
, (40)

σi j = � δi j gkk + M(gi j + g ji ), (41)

ai = R D j σi j , (42)

v
n+1/2
i = v

n−1/2
i + 
t ai , (43)

un+1
i = un

i + 
t v
n+1/2
i . (44)

The material variables incorporate the cell and node volumes

R = 1

ρV N
, (45)

� = λ

V C
, (46)

M = μ

V C
. (47)

If material contrasts are to be aligned with the cell boundaries, it is

most convenient to begin with an initial cell valued density function

ρC ∈ H C . Care must be taken to conserve global mass, and correctly

align the material boundary when finding the nodal densities. This is

achieved by weighting cell density by cell volume prior to averaging,

R000 = 8
(
V C

000ρ
C
000 + V C

011ρ
C
011 + V C

101ρ
C
101 + V C

110ρ
C
110

+V C
111ρ

C
111 + V C

100ρ
C
100 + V C

010ρ
C
010 + V C

001ρ
C
001

)−1
. (48)

By the same principle, when material contrasts are to bisect the

cells, it is most convenient to begin with initial nodal elastic moduli

(λN , μN ) ∈ H N , and compute the cell values by weighted harmonic

averaging,

�111 = 8

(
V N

000

λN
000

+ V N
011

λN
011

+ V N
101

λN
101

+ V N
110

λN
110

+ V N
111

λN
111

+ V N
100

λN
100

+ V N
010

λN
010

+ V N
001

λN
001

)−1

, (49)

M111 = 8

(
V N

000

μN
000

+ V N
011

μN
011

+ V N
101

μN
101

+ V N
110

μN
110

+ V N
111

μN
111

+ V N
100

μN
100

+ V N
010

μN
010

+ V N
001

μN
001

)−1

. (50)

Stability of the explicit scheme requires that 
t be less than the

shortest time for waves to traverse a cell. The condition

1 <

t


x

√
3(λ + 2μ)

ρ
(51)

is necessary to ensure stability for a rectangular mesh of constant

spacing 
x, and can be used as an approximate guide for selecting

stable time steps for non-rectangular meshes as well.

The 24 degrees of freedom for displacement on the eight node

hexahedral element can be decomposed into three rigid body, nine

uniform, and 12 non-uniform strain modes. The non-uniform modes

are alternatively referred to as hourglass, keystone or bending

modes. Hourglass modes are orthogonal to and transparent to single-

point derivative operators such as we have derived. Unchecked they

may grow to dominate the solution, so they must be independently

controlled. We use a modified form of the hourglass control scheme

described by Flanagan & Belytschko (1981) and more recently by

Day et al. (2005) and Ma & Liu (2006). We define the hourglass

operators

Qi : H N → H C , (52)

(Q1 F)000 = F000 + F011 − F101 − F110

+ F111 + F100 − F010 − F001, (53)

(Q2 F)000 = F000 + F101 − F110 − F011

+ F111 + F010 − F001 − F100, (54)

(Q3 F)000 = F000 + F110 − F011 − F101

+ F111 + F001 − F100 − F010, (55)

(Q4 F)000 = F000 + F011 + F101 + F110

− F111 − F100 − F010 − F001, (56)

and

Qi : H C → H N , (57)

(Q1W)111 = W111 + W100 − W010 − W001

+ W000 + W011 − W101 − W110, (58)

(Q2W)111 = W111 + W010 − W001 − W100

+ W000 + W101 − W110 − W011, (59)

(Q3W)111 = W111 + W001 − W100 − W010

+ W000 + W110 − W011 − W101, (60)

(Q4W)111 = W111 + W100 + W010 + W001

− W000 − W011 − W101 − W110. (61)
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Viscous as well as stiffness hourglass control may be used, for

which we define the viscosity β, and stiffness

Y = μ(λ + μ)

6(λ + 2μ)
. (62)

The correction is applied by modifying the acceleration eq. (42),

and the discrete equations now become:

gi j = D j

(
un

i + γ v
n−1/2
i

)
, (63)

σi j = � δi j gkk + M(gi j + g ji ), (64)

ai = R D j σi j − Qk Y Qk

(
un

i + βv
n−1/2
i

)
, (65)

v
n+1/2
i = v

n−1/2
i + 
t ai , (66)

un+1
i = un

i + 
t v
n+1/2
i . (67)

The form we choose for hourglass stiffness Y is based on the ap-

proximate analysis of Kosloff & Frazier (1978). They found that the

growth of the hourglass modes in 2-D grids was effectively resisted

with a stiffness of this form, and numerical experiments (e.g. Day

et al. 2005; Ma & Liu 2006) demonstrate that the same stiffness

works well to suppress growth of the corresponding 3-D modes, es-

pecially in combination with a damping β of order 1 (and results are

not very sensitive to values of Y and β, once they are large enough

to suppress mode growth).

5 P E R F E C T LY M AT C H E D L AY E R

Modelling waves in a boundless material requires artificial trun-

cation of the computational domain. Various types of absorbing

boundaries have been used to suppress artificial reflections at the

boundaries. One of the most effective is the method of PML. First in-

troduced for electromagnetic waves by Berenger (1994, 1996), PML

sets up an absorbing layer where waves are exponentially attenuated

and the reflection coefficient at the layer interface is nearly zero

for all angles of incidence. Marcinkovich & Olsen (2003) present a

PML absorbing boundary condition for the velocity–stress formula-

tion of elastodynamics. We modify their given system of equations

to find an equivalent formulation that offers a compact notation and

that is more optimized numerically. The modification is a reordering

of operations that results in damping of the spatial derivatives of ve-

locity and stress rather velocity and stress themselves. The change

reduces the additional required storage from nine to six variables

per damping direction, and reduces the number of multiplication

operations. The modified formulation is

ġi j + d(x j )gi j = ∂ jvi , (68)

σ̇i j = λ δi j

∑
k

ġkk + μ(ġi j + ġ j i ), (69)

ṗi j + d(x j )pi j = ∂ jσi j , (70)

v̇i = 1

ρ

∑
j

ṗi j , (71)

where d(x j ) is the damping profile, and x j is the distance measured

from the node or cell location to the PML interface along the x, y or z
direction. Note that repeated indices do not imply summation here.

In this formulation, the PML interface plane must be normal to one

of the Cartesian directions. Where PML zones overlap, such as at the

corners of the model, damping occurs in more than one direction.

For the interior of the model, not in the PML, d(x i ) = 0, and the

equations reduce to the elastic wave equations. This formulation is

suitable for numerical schemes that store the elastic state as velocity

and stress. In this paper, however, we have developed a scheme that

stores velocity and displacement, so the system must be modified

slightly to

ġi j + d(x j )gi j = ∂ jvi , (72)

σi j = λ δi j

∑
k

gkk + μ(gi j + g ji ), (73)

ṗi j + d(x j )pi j = ∂ jσi j , (74)

ai = 1

ρ

∑
j

ṗi j , (75)

v̇i = ai , (76)

u̇i = vi . (77)

Discretizing eqs (72) and (74) gives

gn
i j − gn−1

i j


t
+ d(xi )

gn
i j + gn−1

i j

2
= D jv

n−1/2
i (78)

and

pn+1/2
i j − pn−1/2

i j


t
+ d(xi )

pn+1/2
i j + pn−1/2

i j

2
= D jσi j , (79)

from which we can build an explicit time stepping scheme for the

PML similar to that for the viscoelastic solid in eqs (63)–(67):

gn
i j = 2
t

2 + d(x j )
t
D jv

n−1/2
i + 2 − d(x j )
t

2 + d(x j )
t
gn−1

i j , (80)

σi j = �δi j

∑
k

gn
kk + M

(
gn

i j + gn
ji

)
, (81)

ṗi j = 2

2 + d(xi )
t
D jσi j − 2d(xi )

2 + d(xi )
t
pn−1/2

i j , (82)

ai = R
∑

j

ṗi j − Qk Y Qk

(
βv

n−1/2
i

)
, (83)

pn+1/2
i j = pn−1/2

i j + 
t ṗi j , (84)

v
n+1/2
i = v

n−1/2
i + 
t ai , (85)

un+1
i = un

i + 
t v
n+1/2
i . (86)

For each direction of damping, six extra memory arrays are re-

quired for the storage of g1 j , g2 j , g3 j , p1 j , p2 j and p3 j . The non-

damped components of gi j and pi j need not be stored because, when

d(x j ) = 0, eq. (80) can be replaced by

gi j = D j u
n
i , (87)

and eq. (82) reduces to

ṗi j = D jσ
n
i j . (88)

Ma & Liu (2006) have found that stiffness hourglass control can

cause instability in the PML. Therefore, only viscous hourglass con-

trol is used in eq. (83).
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Following Marcinkovich & Olsen, the damping profile within the

PML zone is given by

d(x) = 3.5Vs

w

(
x

w

)2(
8

15
n − 3

100
n2 + 1

1500
n3

)
, (89)

where w is the PML thickness, n is the number of mesh nodes in the

PML, and Vs is the harmonic mean of the minimum and maximum

S-wave velocities present in the material model.

6 L AY E R E D M O D E L T E S T

For numerical verification of the SOM, we reproduce the double-

couple point source test LOH.1 from Day & Bradley (2001). The

model, diagrammed in Fig. 3, consists of a 1 km layer over a uniform

half-space. In the layer Vs = 2000 m s−1, V p = 4000 m s−1 and

density ρ = 2600 kg m−3, and in the underlying half-space Vs =
3464 m s−1, V p = 6000 m s−1 and ρ = 2700 kg m−3. The model

is purely elastic, so viscosity γ = 0, but we use a relatively high

hourglass viscosity β = 
t . The time step length 
t = 0.004 s.

We do two calculations, one with a rectangular mesh of node spac-

ing 
x = 50 m, and another with a mesh highly distorted by shear-

ing. The sheared mesh is constructed from the rectangular mesh by

applying the coordinate mapping⎡⎢⎣X ′
jkl

Y ′
jkl

Z ′
jkl

⎤⎥⎦ =

⎡⎢⎣1 0 1

1 1 0

0 0 1

⎤⎥⎦
⎡⎢⎣X jkl

Y jkl

Z jkl

⎤⎥⎦ , (90)

where (X , Y , Z) are coordinates of the rectangular mesh and (X ′,
Y ′, Z ′) are coordinates of the sheared mesh. The mapping is a su-

perposition of two 45◦ simple shears with a maximum shear angle

of tan−1(
√

2) = 54.7◦. This mesh is by no means a test for all types

of possible mesh distortion. It does not, for example, address the

case of non-parallelepiped elements or element volume variability.

However, sheared meshes are useful for a number of types of earth-

quake problems, and are readily compatible with the layered model.

A PML absorbing boundary is used for the bottom and side surfaces

of the rectangular mesh and the bottom surface of the sheared mesh.

Since our PML implementation is limited to boundary surfaces that

are normal to the Cartesian directions, it cannot be used on the sides

of the sheared mesh. One way around this is to gradually reduce

the shear of the mesh to zero at the boundary. We have taken an

alternative approach by simply extending the mesh far enough that

artificial reflections to not return during the simulation time.

A double-couple point source is located at the coordinates

(0, 0, 2 km). The non-zero components of the moment tensor are

Mxy = Myx = M0 H (t)√
2π S

e−0.5(t−4S)2/S2
, (91)

where M 0 = 1018 N m, S = 0.09 s and H(t) is a step function.

The half-width of the Gaussian source spectrum is 2.08 Hz, corre-

sponding to a Rayleigh wavelength of 17 gridpoints, and the source

spectrum falls to 10 per cent of its maximum at 3.8 Hz, or about

9 points per Rayleigh wavelength. The source is inserted into the

wave simulation by normalizing the moment tensor by cell volume

and adding it to the stress tensor after eq. (64).

Particle velocity is recorded at three receiver locations at

the surface: S1 (−6 km, −8 km, 0), S2 (6 km, −8 km, 0) and S3

(6 km, 8 km, 0). At 2.08 Hz, the source–receiver distance is approx-

imately equal to 12 Rayleigh wavelengths in the layer, and 3.5 P
wavelengths in the half-space, and at 3.8 Hz, the distance is 21

Rayleigh wavelengths, and 6.3 P wavelengths. Due to symmetry,

the analytical solutions for S1 and S3 are the same in cylindrical co-

ordinates (with z axis through the source point). Receiver S2 is also

the same with a sign change. For the numerical solution, though, the

path from the source to each receiver has a different axis of propa-

gation through the geometry of the sheared elements. The ray path

to S1 is aligned with the long axis of the elements, while the path

to S2 is aligned with the short axis. Receiver S3 has an intermedi-

ate alignment. In this way, anisotropy of wave propagation due to

element distortion can be tested.

Fig. 4 compares velocity time histories from both the rectangular-

and sheared-mesh calculations against a reference solution com-

puted by the frequency-wavenumber (FK) method of Apsel & Luco

(1983). The reference solution can be viewed as semi-analytical, in

that the FK method first forms the doubly Fourier transformed (from

time and radial coordinate to frequency and wavenumber) solution

analytically, then inverts the transformed solution to space–time

coordinates by numerical quadrature. The radial and vertical com-

ponents show good agreement for early arriving P waves and late

Figure 3. Perspective view of the layer over half-space model on a sheared mesh. The layer is 1 km thick. The source is located at 2 km depth, beneath the

origin. Observation points are marked S1, S2 and S3.
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Figure 4. Simulated ground velocity compared to the reference solution calculated by frequency-wavenumber integration (FK). For comparison purposes, the

polarity of S2 has been inverted to match stations S1 and S3.

arriving Rayleigh waves, with amplitude misfits up to 1 per cent of

peak velocity, and arrival time misfits up to 0.01 s. Multiply reflected

P waves have greater misfits of up to 10 per cent of peak velocity,

and up to 0.04 s in time. All of the SOM curves have roughly the

same level of misfit to the FK solution, and a high level of agree-

ment with each other. This indicates that mesh shearing is not the

main source of error for P waves and Rayleigh waves. Given the

source bandwidth noted above, the level of waveform agreement

achieved is consistent with expectations for a second-order accu-

rate method, for which points-per-wavelength requirements in the

range 10–15 are typically cited. The numerical errors take the form

of non-physical dispersion, leading to phase velocity errors that

(for second-order methods) increase monotonically with frequency

(e.g. Virieux 1986) so of course the actual points-per-wavelength re-

quirement depends upon how much tolerance for phase errors one

has in a given application.

The effects of mesh anisotropy are most apparent for S-wave ar-

rivals in the transverse component. Interestingly, the sheared mesh

curves consistently match FK better than does the rectangular mesh

curve. For each arrival, S1 is the closest match, followed by S3,

then S2, and finally the rectangular case. We have observed that the

differences between the stations increases with hourglass viscosity

β, and we attribute the higher mismatch for the rectangular mesh to

hourglass oscillations, and imperfect removal of them by the hour-

glass correction scheme. Rectangular meshes are more susceptible

to hourglass errors due to stronger coherence of the grid oscillation

modes. Conversely, a greater diversity of nodal spacing and relative

position lead to reduced hourglass mode coherence in the sheared

mesh.

7 S E M I - C I RC U L A R C A N YO N T E S T

Our second numerical test aims to verify the free surface bound-

ary condition in the presence of topographic features. A vertically

incident P wave on a semi-circular canyon presents a challenging

test for numerical methods, as significant energy is converted to SV

and Rayleigh waves, and relative amplification is highly variable in

and around the canyon. The problem has been thoroughly studied

using various types of boundary integral methods that we may use

to verify the results of our present method.

The problem is set up with dimensionless parameters ρ = 1,

V p = 2, Vs = 1, γ = 0 and a semi-circular cavity of radius R0 = 1

at the surface of a half space (Fig. 5). We accommodate the 2-D ge-

ometry by constructing a mesh with a thickness of one element in the

z direction, and restricting motion to the x–y plane. To facilitate pla-

nar boundary conditions, the outer boundaries are made rectangular.

The dimensions of the mesh are 22R0 × 11R0. Elements gradually

increase in size from 0.005R0 at the canyon to 0.07R0 at the bound-

aries. Computational savings are realized by calculating solutions
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X

Y
R 0

Figure 5. Close-in view of the mesh for a semi-circular canyon. The mesh

extends outward to rectangular boundaries at x = ±11R0 and y = 11R0.

for only the positive x half of the mesh, and enforcing a symmetry

boundary condition along the y-axis. The symmetry boundary con-

dition is also applied to the x = 11R0 boundary, which is placed far

enough from the canyon, that no horizontal motion is received dur-

ing the simulation time. The vertically incident P wave is introduced

as a boundary condition on displacement at the y = 11R0 boundary.

We mention that the time function of the source is a Ricker wavelet

of f 0 = 0.5, though the exact form is not crucial for the method

of analysis using spectral ratios. The computation is run for 6000

iterations with a time step of 
t = 0.002.

Analysis is preformed in terms of normalized frequency f 0 =
ω R0/2πVs . We consider the displacement amplitude at the surface

for two frequencies: f 0 =0.25 and 1.0. The low frequency case, stud-

ied by Wong (1982), Sánchez-Sesma et al. (1985) and Mossessian

& Dravinski (1987), corresponds to a P wavelength of four times

the canyon width and an S wavelength of twice the canyon width.

The high frequency case, also studied by Wong, as well as Kawase

(1988) and Sánchez-Sesma & Campillo (1991), corresponds to a P
wavelength equal to the canyon width, and an S wavelength equal

to half of the canyon width. Our results agree particularly well with

the more recent studies (Fig. 6).

For the high frequency case, the limiting factor for satisfactory

agreement, is the spatial resolution of the P wave at the bottom

boundary where elements are largest. For f 0 = 1.0, the resolution

is 28 points per wavelength at the bottom. We have seen notable

differences in the surface response, when the resolution goes below

20 points per wavelength for the P wave source. The f = 0.25 signal

is more than adequately resolved in the discretization, with at least

50 points per wavelength for all types of waves.

8 PA R A L L E L I Z AT I O N

For large computational tasks, code parallelization is required for

maximal utilization of modern computer hardware. A significant

benefit of the structured mesh approach we have taken is that appor-

tioning work among multiple processors is straightforward. We have

implemented domain decomposition, where the mesh is subdivided

and distributed across processors. During each time step, between

eqs (65) and (66) in the computational cycle, the nodal acceleration

field at each subdomain edges is transmitted to the neighbouring

subdomain. In this way, the subdomains are connected to form a

single global computational domain.

To test parallel performance, we benchmarked our code on the

TeraGrid IA64 cluster at the San Diego Supercomputer Center. A

traditional strong scaling test measures runtime speedup for a fixed

size problem as the number of processors increases. However, due

to the distributed memory architecture of the cluster, it is impossible

for a fixed size problem to fit in a single processor’s memory and
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Figure 6. Surface displacement amplitude, at frequencies f 0 = 0.25 (top)

and f 0 = 1.0 (bottom), as function of horizontal distance from the centre of

the canyon. Amplitudes are relative to the vertically incident P-wave source.

Results digitized from previous studies are shown for comparison.

at the same time be a representative test for the communication and

memory access patterns of a typical real-world, large-scale problem.

For this reason, we prefer a weak scaling test in which the problem

size is increased proportionally to the number of processors. Our

weak scaling benchmark consists of a problem size of 128 × 128 ×
128 nodes per processor, run for 10 time steps. Timing begins after

code initialization, since, though insignificant for a long run, initial-

ization time might well influence a short-running benchmark test.

The tests take about 30 s to run on TeraGrid. Ideal weak scaling

occurs when runtime stays the same as the number of processors

(and problem size) increases. The code achieves 84 per cent effi-

ciency on 512 processors. And, as shown in Table 2, the falloff in

efficiency between 8 and 512 processors is very gradual, indicat-

ing the code likely will continue to scale well to higher numbers of

processors.
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Table 2. Weak scaling benchmark for the SDSC TeraGrid

IA64 Cluster.

Normalized

Processors run-time Efficiency

1 1.000 100 per cent

8 1.176 85.1 per cent

64 1.182 84.6 per cent

512 1.188 84.2 per cent

9 D I S C U S S I O N A N D C O N C L U S I O N S

We have described a 3-D, arbitrary-order, SOM for viscoelastic

wave simulation and implemented it for the second order case.

We have also implemented hourglass corrections, a free surface

boundary condition, and a PML absorbing boundary condition.

Our method addresses the problem of adding topography and non-

planar boundaries to earthquake simulations. It has been tested

against FK solutions for wave propagation in a layer over half-

space model (LOH.1), on a rectangular mesh as well as a mesh

deformed by 54.7◦ simple shear. For wavelengths long enough to

be propagated without significant numerical dispersion (e.g. repre-

sented by more than 10 points per wavelength) in the rectangular

mesh, shearing the mesh introduces no measurable anisotropy. The

points-per-wavelength requirement found here is typical of second-

order methods. The use of a structured mesh permits very efficient

parallel execution, and we have been able to demonstrate scalabil-

ity of the algorithm at greater than 80 per cent efficiency on up to

512 processors.

The choice of using a logically rectangular mesh rather than an un-

structured mesh has trade-offs. Unstructured meshes, used by some

of the other methods cited in Section 1, are more adaptable to arbi-

trary problem geometry. They also allow for a high degree of local

mesh refinement, which is particularly useful for modelling basins

with a large range of material velocities, or for resolving small-

scale detail of fault rupture dynamics. On the other hand, structured

meshes, though significantly more restrictive, are more computa-

tionally efficient. If the differentiation operators are saved in mem-

ory, floating-point operations are reduced by a factor of 6, nearly to

the level of rectangular finite differences. This reduces actual run

times by a factor of 3. Structured meshes also greatly simplify the

tasks of parallelization, mesh generation and visualization of re-

sults. When the ratio of maximum to minimum wave speed over the

problem domain is not extreme, and the problem geometry can be

adequately handled, structured meshes are quite advantageous. As

an example, we have run wave propagation problems of 1.8 billion

nodes, using 1920 processors and 250 GB of memory, that achieved

a computation rate of 370 Gflop s−1. That example used the SCEC

Community Velocity Model (Magistrale et al. 2000), with a ratio of

maximum to minimum wave speed of roughly 20.

Our method can be easily adapted to split nodes and non-linear

boundary conditions to simulate rupture. We presented rupture dy-

namics simulations on sheared meshes in Ely et al. (2005) that

achieved accuracy comparable to rectangular mesh rupture dynam-

ics methods. This will facilitate research on the dynamics of faults

with realistic morphology, which, among other things, may produce

strong nonlinear coupling between shear and normal stress pertur-

bations. It also facilitates research on dynamics of dipping faults.

Because the method works explicitly with stress components

(rather than a stiffness matrix, for example), it is easily generalized to

calculate stresses from inelastic constitutive models (e.g. Coulomb

plasticity, damage rheology, etc.), at the cost of saving the stress ten-

sor components globally. This capability would be important in the

study earthquake rupture dynamics, for example, as rupture-induced

off-fault nonlinear deformation may be a significant contributor to

the energy budget of earthquakes, and may also influence strong

motion amplitudes.

We have formulated the SOM method for arbitrary order of accu-

racy, leaving the potential for developing a higher order algorithm.

At higher than order two, however, it may not be possible to solve

integral (20) algebraically. Instead, numerical quadrature would be

required to calculate the operator weights. Either method of calcu-

lating the weights will be computationally costly, and the optimal

scheme may be to store the weights rather that recalculate them on-

the-fly. In a stored scheme, fourth-order operators, with a 4 × 4 × 4

stencil, are eight times more costly than second-order operators in

terms of storage and computations per time step required to com-

pute the spatial derivatives. When the entire numerical algorithm is

considered, this translates to a fivefold increase in storage and com-

putations for going to fourth order. The increased accuracy, though,

reduces the points-per-wavelength requirement, permitting spatial

and temporal resolution to be reduced. If the points-per-wavelength

requirement can be reduced enough to surpass the break-even point

in the cost trade-off, then the fourth-order method will be beneficial.

Given that the memory usage goes like the third power of spatial

resolution, and computational cost goes like the fourth power, we

would need a factor of
3
√

5 points-per-wavelength gain to break even

on storage, and a factor of
4
√

5 gain to break even on computations.
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Dalguer, L.A. & Day, S.M., 2007. Staggered-grid split-node method for

spontaneous rupture simulation, J. geophys. Res., 112, B02302.

Day, S.M. & Bradley, C.R., 2001. Memory-efficient simulation of anelastic

wave propagation, Bull. seism. Soc. Am., 91(3), 520–531.

Day, S.M. & Minster, J.-B., 1984. Numerical simulation of attenuated wave-
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A P P E N D I X A : S PAT I A L D I F F E R E N C E

O P E R AT O R S

These are the 3-D, second-order difference operators for gradient

and divergence. Eqs (A1)–(A6) are the exactly integrated versions,

and eqs (A8)–(A12) are the one-point quadrature versions.

Exactly integrated gradient, x component:

(Dx F)000 = 1

12

{F111[(Y100 − Y011)(Z110 − Z101) + Y011(Z001 − Z010)

+ (Y010 − Y101)(Z011 − Z110) + Y101(Z100 − Z001)

+ (Y001 − Y110)(Z101 − Z011) + Y110(Z010 − Z100)]

+F100[(Y111 − Y000)(Z101 − Z110) + Y000(Z010 − Z001)

+ (Y010 − Y101)(Z110 − Z000) + Y101(Z001 − Z111)

+ (Y001 − Y110)(Z000 − Z101) + Y110(Z111 − Z010)]

+F010[(Y111 − Y000)(Z110 − Z011) + Y000(Z001 − Z100)

+ (Y100 − Y011)(Z000 − Z110) + Y011(Z111 − Z001)

+ (Y001 − Y110)(Z011 − Z000) + Y110(Z100 − Z111)]

+F001[(Y111 − Y000)(Z011 − Z101) + Y000(Z100 − Z010)

+ (Y100 − Y011)(Z101 − Z000) + Y011(Z010 − Z111)

+ (Y010 − Y101)(Z000 − Z011) + Y101(Z111 − Z100)]

+ F000[(Y011 − Y100)(Z010 − Z001) + Y100(Z101 − Z110)

+ (Y101 − Y010)(Z001 − Z100) + Y010(Z110 − Z011)

+ (Y110 − Y001)(Z100 − Z010) + Y001(Z011 − Z101)]

+F011[(Y000 − Y111)(Z001 − Z010) + Y111(Z110 − Z101)

+ (Y101 − Y010)(Z111 − Z001) + Y010(Z000 − Z110)

+ (Y110 − Y001)(Z010 − Z111) + Y001(Z101 − Z000)]

+F101[(Y000 − Y111)(Z100 − Z001) + Y111(Z011 − Z110)

+ (Y011 − Y100)(Z001 − Z111) + Y100(Z110 − Z000)

+ (Y110 − Y001)(Z111 − Z100) + Y001(Z000 − Z011)]

+F110[(Y000 − Y111)(Z010 − Z100) + Y111(Z101 − Z011)

+ (Y011 − Y100)(Z111 − Z010) + Y100(Z000 − Z101)

+ (Y101 − Y010)(Z100 − Z111) + Y010(Z011 − Z000)]}. (A1)

Exactly integrated divergence, x component:

(Dx W)111 = 1

12

{W111[(Y211 − Y122)(Z121 − Z112) + Y211(Z221 − Z212)

+ (Y121 − Y212)(Z112 − Z211) + Y121(Z122 − Z221)

+ (Y112 − Y221)(Z211 − Z121) + Y112(Z212 − Z122)]

+W100[(Y211 − Y100)(Z101 − Z110) + Y211(Z201 − Z210)

+ (Y101 − Y210)(Z110 − Z211) + Y101(Z100 − Z201)

+ (Y110 − Y201)(Z211 − Z101) + Y110(Z210 − Z100)]
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+W010[(Y121 − Y010)(Z110 − Z011) + Y121(Z120 − Z021)

+ (Y110 − Y021)(Z011 − Z121) + Y110(Z010 − Z120)

+ (Y011 − Y120)(Z121 − Z110) + Y011(Z021 − Z010)]

+W001[(Y112 − Y001)(Z011 − Z101) + Y112(Z012 − Z102)

+ (Y011 − Y102)(Z101 − Z112) + Y011(Z001 − Z012)

+ (Y101 − Y012)(Z112 − Z011) + Y101(Z102 − Z001)]

+W000[(Y011 − Y100)(Z110 − Z101) + Y011(Z010 − Z001)

+ (Y101 − Y010)(Z011 − Z110) + Y101(Z001 − Z100)

+ (Y110 − Y001)(Z101 − Z011) + Y110(Z100 − Z010)]

+W011[(Y011 − Y122)(Z112 − Z121) + Y011(Z012 − Z021)

+ (Y121 − Y012)(Z011 − Z112) + Y121(Z021 − Z122)

+ (Y112 − Y021)(Z121 − Z011) + Y112(Z122 − Z012)]

+W101[(Y101 − Y212)(Z211 − Z112) + Y101(Z201 − Z102)

+ (Y112 − Y201)(Z101 − Z211) + Y112(Z102 − Z212)

+ (Y211 − Y102)(Z112 − Z101) + Y211(Z212 − Z201)]

+W110[(Y110 − Y221)(Z121 − Z211) + Y110(Z120 − Z210)

+ (Y211 − Y120)(Z110 − Z121) + Y211(Z210 − Z221)

+ (Y121 − Y210)(Z211 − Z110) + Y121(Z221 − Z120)]}. (A2)

Exactly integrated gradient, y component:

(Dy F)000 = 1

12

{F111[(Z100 − Z011)(X110 − X101) + Z011(X001 − X010)

+ (Z010 − Z101)(X011 − X110) + Z101(X100 − X001)

+ (Z001 − Z110)(X101 − X011) + Z110(X010 − X100)]

+F100[(Z111 − Z000)(X101 − X110) + Z000(X010 − X001)

+ (Z010 − Z101)(X110 − X000) + Z101(X001 − X111)

+ (Z001 − Z110)(X000 − X101) + Z110(X111 − X010)]

+F010[(Z111 − Z000)(X110 − X011) + Z000(X001 − X100)

+ (Z100 − Z011)(X000 − X110) + Z011(X111 − X001)

+ (Z001 − Z110)(X011 − X000) + Z110(X100 − X111)]

+F001[(Z111 − Z000)(X011 − X101) + Z000(X100 − X010)

+ (Z100 − Z011)(X101 − X000) + Z011(X010 − X111)

+ (Z010 − Z101)(X000 − X011) + Z101(X111 − X100)]

+ F000[(Z011 − Z100)(X010 − X001) + Z100(X101 − X110)

+ (Z101 − Z010)(X001 − X100) + Z010(X110 − X011)

+ (Z110 − Z001)(X100 − X010) + Z001(X011 − X101)]

+F011[(Z000 − Z111)(X001 − X010) + Z111(X110 − X101)

+ (Z101 − Z010)(X111 − X001) + Z010(X000 − X110)

+ (Z110 − Z001)(X010 − X111) + Z001(X101 − X000)]

+F101[(Z000 − Z111)(X100 − X001) + Z111(X011 − X110)

+ (Z011 − Z100)(X001 − X111) + Z100(X110 − X000)

+ (Z110 − Z001)(X111 − X100) + Z001(X000 − X011)]

+F110[(Z000 − Z111)(X010 − X100) + Z111(X101 − X011)

+ (Z011 − Z100)(X111 − X010) + Z100(X000 − X101)

+ (Z101 − Z010)(X100 − X111) + Z010(X011 − X000)]}. (A3)

Exactly integrated divergence, y component:

(DyW)111 = 1

12

{W111[(Z211 − Z122)(X121 − X112) + Z211(X221 − X212)

+ (Z121 − Z212)(X112 − X211) + Z121(X122 − X221)

+ (Z112 − Z221)(X211 − X121) + Z112(X212 − X122)]

+W100[(Z211 − Z100)(X101 − X110) + Z211(X201 − X210)

+ (Z101 − Z210)(X110 − X211) + Z101(X100 − X201)

+ (Z110 − Z201)(X211 − X101) + Z110(X210 − X100)]

+W010[(Z121 − Z010)(X110 − X011) + Z121(X120 − X021)

+ (Z110 − Z021)(X011 − X121) + Z110(X010 − X120)

+ (Z011 − Z120)(X121 − X110) + Z011(X021 − X010)]

+W001[(Z112 − Z001)(X011 − X101) + Z112(X012 − X102)

+ (Z011 − Z102)(X101 − X112) + Z011(X001 − X012)

+ (Z101 − Z012)(X112 − X011) + Z101(X102 − X001)]

+ W000[(Z011 − Z100)(X110 − X101) + Z011(X010 − X001)

+ (Z101 − Z010)(X011 − X110) + Z101(X001 − X100)

+ (Z110 − Z001)(X101 − X011) + Z110(X100 − X010)]

+W011[(Z011 − Z122)(X112 − X121) + Z011(X012 − X021)

+ (Z121 − Z012)(X011 − X112) + Z121(X021 − X122)

+ (Z112 − Z021)(X121 − X011) + Z112(X122 − X012)]

+W101[(Z101 − Z212)(X211 − X112) + Z101(X201 − X102)

+ (Z112 − Z201)(X101 − X211) + Z112(X102 − X212)

+ (Z211 − Z102)(X112 − X101) + Z211(X212 − X201)]

+W110[(Z110 − Z221)(X121 − X211) + Z110(X120 − X210)

+ (Z211 − Z120)(X110 − X121) + Z211(X210 − X221)

+ (Z121 − Z210)(X211 − X110) + Z121(X221 − X120)]}. (A4)

Exactly integrated gradient, z component:

(Dz F)000 = 1

12

{F111[(X100 − X011)(Y110 − Y101) + X011(Y001 − Y010)

+ (X010 − X101)(Y011 − Y110) + X101(Y100 − Y001)

+ (X001 − X110)(Y101 − Y011) + X110(Y010 − Y100)]

+F100[(X111 − X000)(Y101 − Y110) + X000(Y010 − Y001)

+ (X010 − X101)(Y110 − Y000) + X101(Y001 − Y111)

+ (X001 − X110)(Y000 − Y101) + X110(Y111 − Y010)]

+F010[(X111 − X000)(Y110 − Y011) + X000(Y001 − Y100)

+ (X100 − X011)(Y000 − Y110) + X011(Y111 − Y001)

+ (X001 − X110)(Y011 − Y000) + X110(Y100 − Y111)]

+F001[(X111 − X000)(Y011 − Y101) + X000(Y100 − Y010)

+ (X100 − X011)(Y101 − Y000) + X011(Y010 − Y111)

+ (X010 − X101)(Y000 − Y011) + X101(Y111 − Y100)]

+ F000[(X011 − X100)(Y010 − Y001) + X100(Y101 − Y110)

+ (X101 − X010)(Y001 − Y100) + X010(Y110 − Y011)

+ (X110 − X001)(Y100 − Y010) + X001(Y011 − Y101)]
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+F011[(X000 − X111)(Y001 − Y010) + X111(Y110 − Y101)

+ (X101 − X010)(Y111 − Y001) + X010(Y000 − Y110)

+ (X110 − X001)(Y010 − Y111) + X001(Y101 − Y000)]

+F101[(X000 − X111)(Y100 − Y001) + X111(Y011 − Y110)

+ (X011 − X100)(Y001 − Y111) + X100(Y110 − Y000)

+ (X110 − X001)(Y111 − Y100) + X001(Y000 − Y011)]

+F110[(X000 − X111)(Y010 − Y100) + X111(Y101 − Y011)

+ (X011 − X100)(Y111 − Y010) + X100(Y000 − Y101)

+ (X101 − X010)(Y100 − Y111) + X010(Y011 − Y000)]}. (A5)

Exactly integrated divergence, z component:

(DzW)111 = 1

12

{W111[(X211 − X122)(Y121 − Y112) + X211(Y221 − Y212)

+ (X121 − X212)(Y112 − Y211) + X121(Y122 − Y221)

+ (X112 − X221)(Y211 − Y121) + X112(Y212 − Y122)]

+W100[(X211 − X100)(Y101 − Y110) + X211(Y201 − Y210)

+ (X101 − X210)(Y110 − Y211) + X101(Y100 − Y201)

+ (X110 − X201)(Y211 − Y101) + X110(Y210 − Y100)]

+W010[(X121 − X010)(Y110 − Y011) + X121(Y120 − Y021)

+ (X110 − X021)(Y011 − Y121) + X110(Y010 − Y120)

+ (X011 − X120)(Y121 − Y110) + X011(Y021 − Y010)]

+W001[(X112 − X001)(Y011 − Y101) + X112(Y012 − Y102)

+ (X011 − X102)(Y101 − Y112) + X011(Y001 − Y012)

+ (X101 − X012)(Y112 − Y011) + X101(Y102 − Y001)]

+W000[(X011 − X100)(Y110 − Y101) + X011(Y010 − Y001)

+ (X101 − X010)(Y011 − Y110) + X101(Y001 − Y100)

+ (X110 − X001)(Y101 − Y011) + X110(Y100 − Y010)]

+W011[(X011 − X122)(Y112 − Y121) + X011(Y012 − Y021)

+ (X121 − X012)(Y011 − Y112) + X121(Y021 − Y122)

+ (X112 − X021)(Y121 − Y011) + X112(Y122 − Y012)]

+W101[(X101 − X212)(Y211 − Y112) + X101(Y201 − Y102)

+ (X112 − X201)(Y101 − Y211) + X112(Y102 − Y212)

+ (X211 − X102)(Y112 − Y101) + X211(Y212 − Y201)]

+W110[(X110 − X221)(Y121 − Y211) + X110(Y120 − Y210)

+ (X211 − X120)(Y110 − Y121) + X211(Y210 − Y221)

+ (X121 − X210)(Y211 − Y110) + X121(Y221 − Y120)]}. (A6)

One-point quadrature gradient, x component:

(Dx F)000 = 1

16

{(F111 − F000)[(Y100 − Y011)(Z010 − Z101 − Z001 + Z110)

+ (Y010 − Y101)(Z001 − Z110 − Z100 + Z011)

+ (Y001 − Y110)(Z100 − Z011 − Z010 + Z101)]

+(F100 − F011)[(Y111 − Y000)(Z001 − Z110 − Z010 + Z101)

+ (Y010 − Y101)(Z111 − Z000 − Z001 + Z110)

+ (Y001 − Y110)(Z010 − Z101 − Z111 + Z000)]

+(F010 − F101)[(Y111 − Y000)(Z100 − Z011 − Z001 + Z110)

+ (Y001 − Y110)(Z111 − Z000 − Z100 + Z011)

+ (Y100 − Y011)(Z001 − Z110 − Z111 + Z000)]

+(F001 − F110)[(Y111 − Y000)(Z010 − Z101 − Z100 + Z011)

+ (Y100 − Y011)(Z111 − Z000 − Z010 + Z101)

+ (Y010 − Y101)(Z100 − Z011 − Z111 + Z000)]}. (A7)

One-point quadrature divergence, x component:

(Dx W)111 = 1

16

{W111[(Y211 − Y122)(Z121 − Z212 − Z112 + Z221)

+ (Y121 − Y212)(Z112 − Z221 − Z211 + Z122)

+ (Y112 − Y221)(Z211 − Z122 − Z121 + Z212)]

+W100[(Y211 − Y100)(Z101 − Z210 − Z110 + Z201)

+ (Y101 − Y210)(Z110 − Z201 − Z211 + Z100)

+ (Y110 − Y201)(Z211 − Z100 − Z101 + Z210)]

+W010[(Y121 − Y010)(Z110 − Z021 − Z011 + Z120)}. (A8)

One-point quadrature gradient, y component:

(Dy F)000 = 1

16

{(F111 − F000)[(Z100 − Z011)(X010 − X101 − X001 + X110)

+ (Z010 − Z101)(X001 − X110 − X100 + X011)

+(Z001 − Z110)(X100 − X011 − X010 + X101)]

+(F100 − F011)[(Z111 − Z000)(X001 − X110 − X010 + X101)

+(Z010 − Z101)(X111 − X000 − X001 + X110)

+(Z001 − Z110)(X010 − X101 − X111 + X000)]

+(F010 − F101)[(Z111 − Z000)(X100 − X011 − X001 + X110)

+(Z001 − Z110)(X111 − X000 − X100 + X011)

+(Z100 − Z011)(X001 − X110 − X111 + X000)]

+(F001 − F110)[(Z111 − Z000)(X010 − X101 − X100 + X011)

+(Z100 − Z011)(X111 − X000 − X010 + X101)

+(Z010 − Z101)(X100 − X011 − X111 + X000)]}. (A9)

One-point quadrature divergence, y component:

(DyW)111 = 1
16

{W111[(Z211 − Z122)(X121 − X212 − X112 + X221)

+ (Z121 − Z212)(X112 − X221 − X211 + X122)

+ (Z112 − Z221)(X211 − X122 − X121 + X212)]

+W100[(Z211 − Z100)(X101 − X210 − X110 + X201)

+ (Z101 − Z210)(X110 − X201 − X211 + X100)

+ (Z110 − Z201)(X211 − X100 − X101 + X210)]

+W010[(Z121 − Z010)(X110 − X021 − X011 + X120)

+ (Z110 − Z021)(X011 − X120 − X121 + X010)

+ (Z011 − Z120)(X121 − X010 − X110 + X021)]

C© 2007 The Authors, GJI, 172, 331–344

Journal compilation C© 2007 RAS



344 G. P. Ely, S. M. Day and J.-B. Minster

+W001[(Z112 − Z001)(X011 − X102 − X101 + X012)

+ (Z011 − Z102)(X101 − X012 − X112 + X001)

+ (Z101 − Z012)(X112 − X001 − X011 + X102)]

+W000[(Z011 − Z100)(X010 − X101 − X001 + X110)

+ (Z101 − Z010)(X001 − X110 − X100 + X011)

+ (Z110 − Z001)(X100 − X011 − X010 + X101)]

+W011[(Z011 − Z122)(X012 − X121 − X021 + X112)

+ (Z121 − Z012)(X021 − X112 − X122 + X011)

+ (Z112 − Z021)(X122 − X011 − X012 + X121)]

+W101[(Z101 − Z212)(X201 − X112 − X102 + X211)

+ (Z112 − Z201)(X102 − X211 − X212 + X101)

+ (Z211 − Z102)(X212 − X101 − X201 + X112)]

+W110[(Z110 − Z221)(X120 − X211 − X210 + X121)

+ (Z211 − Z120)(X210 − X121 − X221 + X110)

+ (Z121 − Z210)(X221 − X110 − X120 + X211)]}. (A10)

One-point quadrature gradient, z component:

(Dz F)000 = 1

16

{(F111 − F000)[(X100 − X011)(Y010 − Y101 − Y001 + Y110)

+ (X010 − X101)(Y001 − Y110 − Y100 + Y011)

+ (X001 − X110)(Y100 − Y011 − Y010 + Y101)]

+(F100 − F011)[(X111 − X000)(Y001 − Y110 − Y010 + Y101)

+ (X010 − X101)(Y111 − Y000 − Y001 + Y110)

+ (X001 − X110)(Y010 − Y101 − Y111 + Y000)]

+(F010 − F101)[(X111 − X000)(Y100 − Y011 − Y001 + Y110)

+ (X001 − X110)(Y111 − Y000 − Y100 + Y011)

+ (X100 − X011)(Y001 − Y110 − Y111 + Y000)]

+(F001 − F110)[(X111 − X000)(Y010 − Y101 − Y100 + Y011)

+ (X100 − X011)(Y111 − Y000 − Y010 + Y101)

+ (X010 − X101)(Y100 − Y011 − Y111 + Y000)]}. (A11)

One-point quadrature divergence, z component:

(DzW)111 = 1

16

{W111[(X211 − X122)(Y121 − Y212 − Y112 + Y221)

+ (X121 − X212)(Y112 − Y221 − Y211 + Y122)

+ (X112 − X221)(Y211 − Y122 − Y121 + Y212)]

+W100[(X211 − X100)(Y101 − Y210 − Y110 + Y201)

+ (X101 − X210)(Y110 − Y201 − Y211 + Y100)

+ (X110 − X201)(Y211 − Y100 − Y101 + Y210)]

+W010[(X121 − X010)(Y110 − Y021 − Y011 + Y120)

+ (X110 − X021)(Y011 − Y120 − Y121 + Y010)

+ (X011 − X120)(Y121 − Y010 − Y110 + Y021)]

+W001[(X112 − X001)(Y011 − Y102 − Y101 + Y012)

+ (X011 − X102)(Y101 − Y012 − Y112 + Y001)

+ (X101 − X012)(Y112 − Y001 − Y011 + Y102)]

+W000[(X011 − X100)(Y010 − Y101 − Y001 + Y110)

+ (X101 − X010)(Y001 − Y110 − Y100 + Y011)

+ (X110 − X001)(Y100 − Y011 − Y010 + Y101)]

+W011[(X011 − X122)(Y012 − Y121 − Y021 + Y112)

+ (X121 − X012)(Y021 − Y112 − Y122 + Y011)

+ (X112 − X021)(Y122 − Y011 − Y012 + Y121)]

+W101[(X101 − X212)(Y201 − Y112 − Y102 + Y211)

+ (X112 − X201)(Y102 − Y211 − Y212 + Y101)

+ (X211 − X102)(Y212 − Y101 − Y201 + Y112)]

+W110[(X110 − X221)(Y120 − Y211 − Y210 + Y121)

+ (X211 − X120)(Y210 − Y121 − Y221 + Y110)

+ (X121 − X210)(Y221 − Y110 − Y120 + Y211)]}. (A12)
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