

Presentation for February 25, 2011 Cal Poly Pomona, Pomona, CA

February 2011 SCEC Rupture Dynamics Code Validation Workshop

Ruth A. Harris (U.S. Geological Survey)

Plans for this workshop

*See a quick overview of our group's activities to date

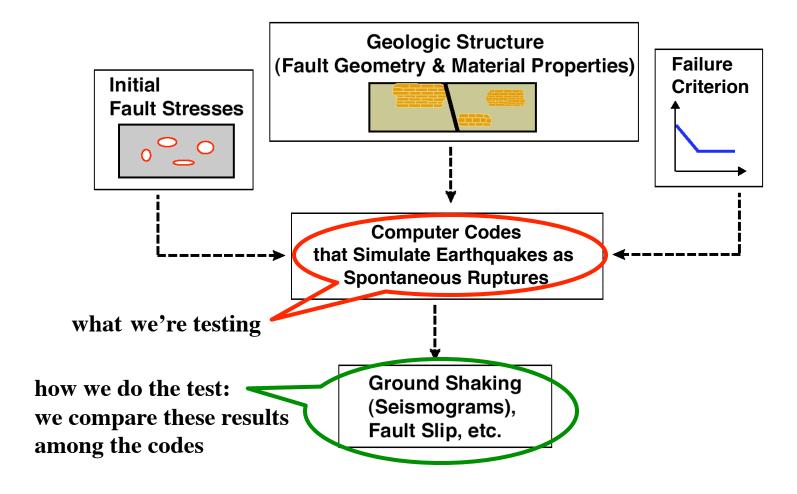
*Learn about related SCEC Technical Activity Groups

*Learn about a new code

*Examine the results from the latest benchmarks

*Learn about fault intersections

*Plan our next steps


SCEC Rupture Dynamics Code Validation Workshop

Friday February 25, 2011 Kellogg West Conference Center, Cal Poly Pomona, Pomona, CA

10:00 Introduction to Workshop		Ruth Harris	
	Overview of Related SCEC TAGs		
10:30	Source Inversion Validation	Morgan Page	
10:45	Earthquake-Cycle Simulators	Keith Richards-Dinger	
11:00	Kinematic Ground Motion Simulations	Brad Aagaard	
11:15	A New Code - Tetemeko	Jeremy Kozdon	
11:45	Lunch		
12:45	TPV105 - Thermal Pressurization Benchmark	Eric Dunham	
13:45	TPV14, TPV15 - Branched Fault Benchmarks	Michael Barall	
14:45	Break		
	Fault Intersections	Brad Aagaard/Nora DeDontney	
15:15	How They Look in the California Fault Map	Tim Dawson	
15:40	How We Currently Model Them	David Oglesby	
16:00	How We May Improve our Method	Eric Dunham/Jeremy Kozdon	
16:20	Group Discussion	All	
17:00	Adjourn		

What our Group Does – Computer Code Testing

Our SRL article

link available on our website

http://scecdata.usc.edu/cvws

Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake-Rupture Code Verification Exercise,

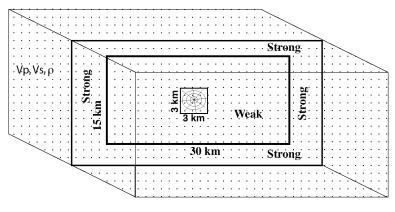
Seismological Research Letters, vol. 80, no. 1, 2009.

Overall Goal of our Code Verification Group

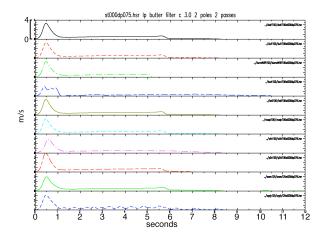
Compare the computational methods currently being used by SCEC and USGS scientists to simulate (spontaneous) earthquake rupture dynamics

Some Specific Objectives

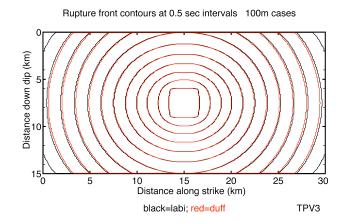
Understand if our methods are producing the same results when using the same assumptions about friction, crustal structure, fault geometry, etc.


Funding

This project has been funded by the Southern California Earthquake Center, the U.S. Geological Survey, the U.S. Dept. of Energy, and the PG&E Company

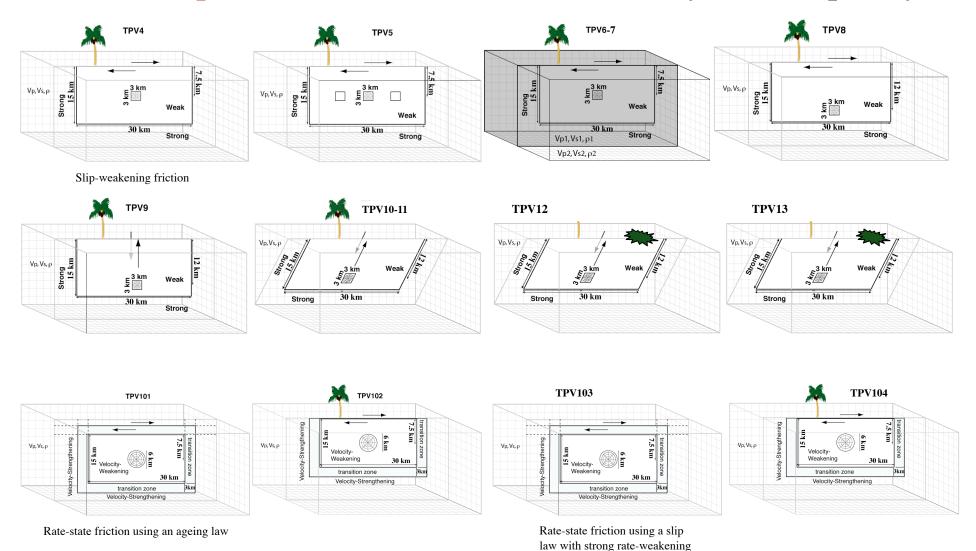

Code Comparison Strategy Start simply

Spontaneous
rupture on a
vertical strike-slip
fault set in a
homogeneous
(materials)
elastic Fullspace



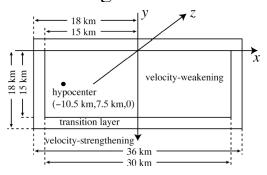
homogeneous initial stresses

slip-weakening friction



Some Results

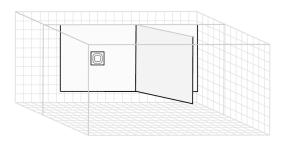
Code Comparison Benchmarks – Incrementally add complexity


Code Comparison Strategy

Incrementally adding complexity: friction, fault geometry

Rupture on a Vertical strike-slip fault set in a homogeneous materials elastic halfspace,

Thermal pressurization


with rate-state friction, slip-law, strong rateweakening

TPV105-2D

Rupture on a

Branching strike-slip
fault set in a Homogeneous
(materials)
elastic halfspace,
homogeneous initial
stresses,
Slip-weakening friction

TPV14-15

Recently Completed Work – ExGM project

New multi-author (TPV12-13 modelers) paper about to be submitted to SRL

Andrews et al., BSSA, 2007 Figure 7

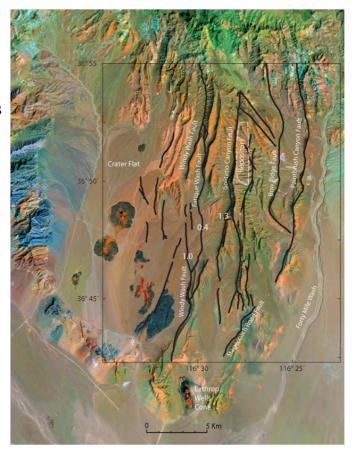
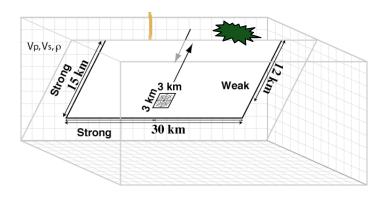



Figure 7. Color orthophoto map of the Yucca Mountain area with surface fault traces from figure 2 of Whitney, Taylor, and Menges, 2004 shown in the smaller boxed area. Numbers show locations of observed maximum-slip values of 1.3 m on the Solitario Canyon fault, 0.4 m on the Fatigue Wash fault, and 1.0 m on the Windy Wash fault at the time of the Lathrop Wells eruption. The footprint of the proposed repository is approximate.

Extreme Ground Motion Produced by an **Extreme Event**

Benchmarks TPV12 and 13

TPV12 = elastic TPV13 = plastic

elastic

Benchmark: tpv12 (The Problem, Version 12)

User	S	Select Checked	Select All	
	Name Description			
	aagaard	Brad Aagaard - Finite Element - EqSim	Select	
	barall	Michael Barall - Finite Element - FaultMod	Select	
	duan	Benchun Duan - Finite Element - EQdyna	Select	
	kaneko	Yoshihiro Kaneko - Spectral Element - SPECFEM3D	Select	
	kase	Yuko Kase - Finite Difference	Select	
✓	ma2	Shuo Ma - MAFE	Select	
✓	oglesby	David Oglesby - Finite Element - DYNA3D	Select	
	Select Checked Select All			

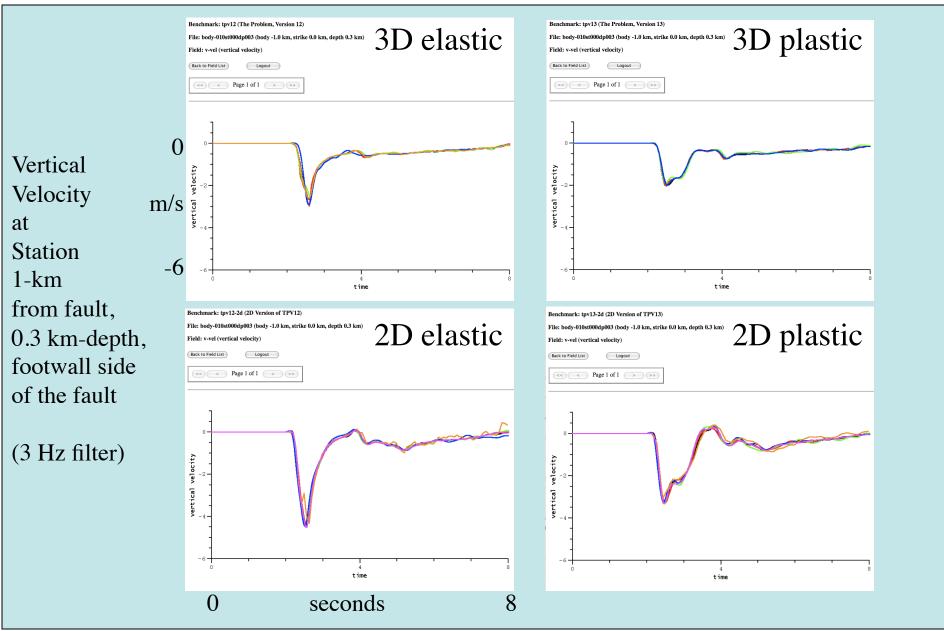
Benchmark: tpv12-2d (2D Version of TPV12)

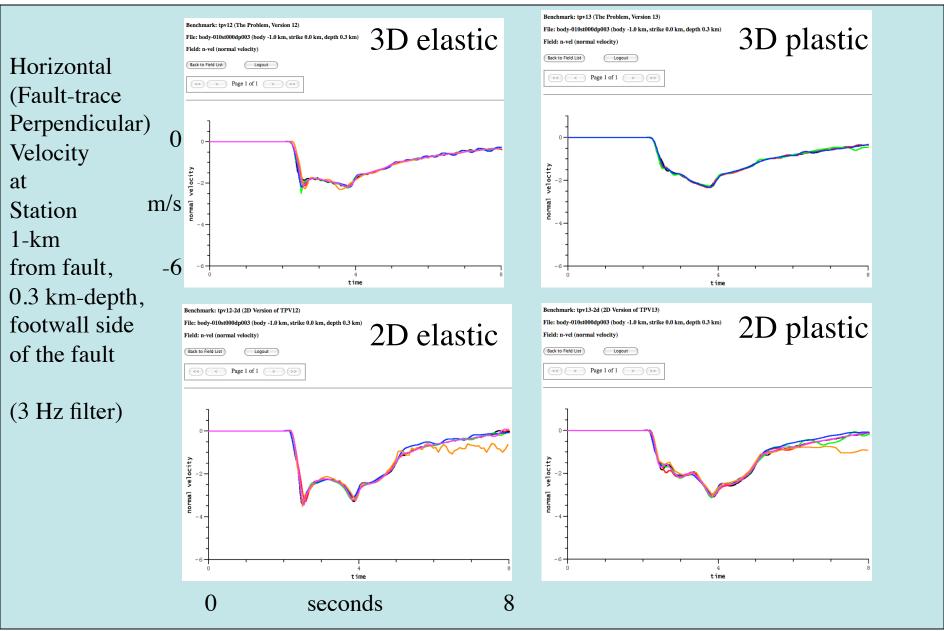
Users Select Checked Select All					
	Name	Description	Action		
✓	andrews	Joe Andrews - 100 m	Select		
	andrews.2	Joe Andrews - 50 m	Select		
	andrews.3	Joe Andrews - 25 m	Select		
	barall	fichael Barall - FaultMod - 100 m			
	barall.2	Michael Barall - FaultMod - 50 m	Select		
✓	duan2	Benchun Duan - 2D Finite Element -100 m			
	duan2.2	Benchun Duan - 2D Finite Element - 12.5 m			
	dunham3	Eric Dunham - FDMAP (2D) 6.25 m			
	dunham3.2	Eric Dunham - FDMAP (2D) 100 m			
	dunham3.3	Eric Dunham - FDMAP (2D) 25 m			
✓	gabriel	Alice Gabriel - 2D Spectral Element - SEM2DPACK - 100m	Select		
	ma2	Shuo Ma - MAFE (2D) - 50m	Select		
	ma2.2	Shuo Ma - MAFE (2D) - 25m	Select		
✓	ma2.3	Shuo Ma - MAFE (2D) - 100m	Select		
✓	oglesby	David Oglesby - Finite Element - DYNA3D	Select		

plastic

Benchmark: tpv13 (The Problem, Version 13)

User	Users Select Checked Select Al				
	Name	Description	Action		
	barall	Michael Barall - Finite Element - FaultMod	Select		
	duan	Benchun Duan - Finite Element - EQdyna	Select		
	kaneko	Yoshihiro Kaneko - Spectral Element - SPECFEM3D	Select		
	ma2	Shuo Ma - MAFE	Select		
	Select Checked Select All				


Benchmark: tpv13-2d (2D Version of TPV13)

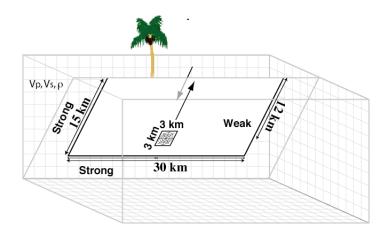

Users Select Checked Select All			
	Name	Description	Action
⋖	andrews	Joe Andrews - 100 m	Select
	andrews.2	Joe Andrews - 50 m	Select
	andrews.3	Joe Andrews - 25 m	Select
✓	barall	Michael Barall - FaultMod - 100 m	Select
	barall.2	Michael Barall - FaultMod - 50 m	Select
⋖	duan2	Benchun Duan - 2D Finite Element - 100 m	Select
	duan2.2	Benchun Duan - 2D Finite Element - 12.5 m	Select
	duan2.3	Benchun Duan - 2D Finite Element - 3.125 m	Select
	dunham3	Eric Dunham - FDMAP (2D) 6.25 m	
✓	dunham3.2	Eric Dunham - FDMAP (2D) 100 m	
	dunham3.3	Eric Dunham - FDMAP (2D) 25 m	Select
✓	gabriel	Alice Gabriel - 2D Spectral Element - SEM2DPACK	Select
⋖	ma2	Shuo Ma - MAFE (2D) - 100m	Select
	ma2.2	Shuo Ma - MAFE (2D) - 50m	Select
	ma2.3	Shuo Ma - MAFE (2D) - 25m	Select
Select Checked Select All			

2D

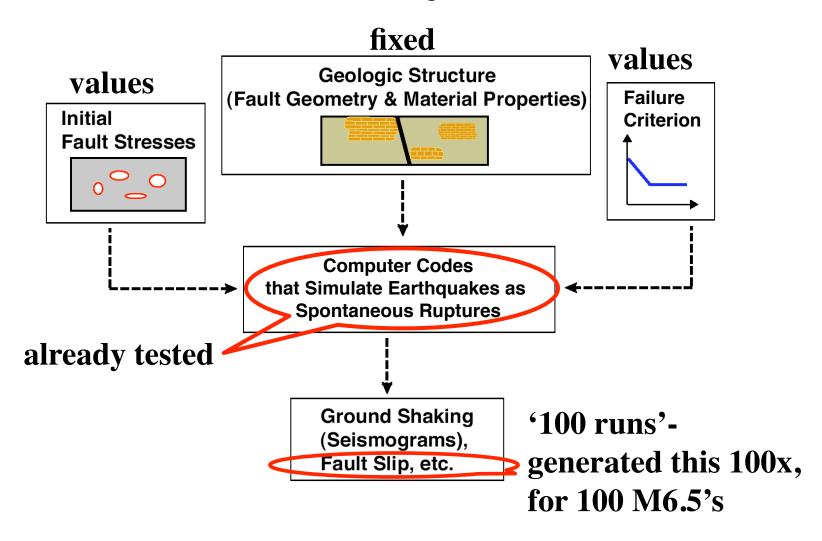
3D

Harris Feb. 2011

SCEC Rupture Dynamics Code Validation Workshop


Friday February 25, 2011 Kellogg West Conference Center, Cal Poly Pomona, Pomona, CA

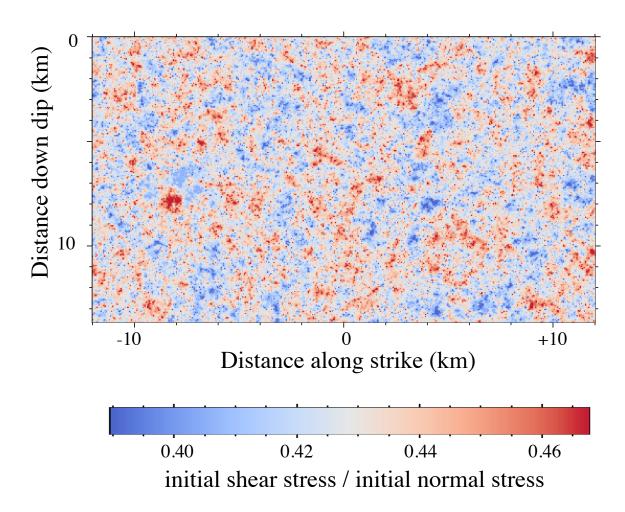
10:00 Introduction to Workshop		Ruth Harris	
	Overview of Related SCEC TAGs		
10:30	Source Inversion Validation	Morgan Page	
10:45	Earthquake-Cycle Simulators	Keith Richards-Dinger	
11:00	Kinematic Ground Motion Simulations	Brad Aagaard	
11:15	A New Code - Tetemeko	Jeremy Kozdon	
11:45	Lunch		
12:45	TPV105 - Thermal Pressurization Benchmark	Eric Dunham	
13:45	TPV14, TPV15 - Branched Fault Benchmarks	Michael Barall	
14:45	Break		
	Fault Intersections	Brad Aagaard/Nora DeDontney	
15:15	How They Look in the California Fault Map	Tim Dawson	
15:40	How We Currently Model Them	David Oglesby	
16:00	How We May Improve our Method	Eric Dunham/Jeremy Kozdon	
16:20	Group Discussion	All	
17:00	Adjourn		


'100 Runs' Exercise

Regular ground motion produced by **regular M6.5's**

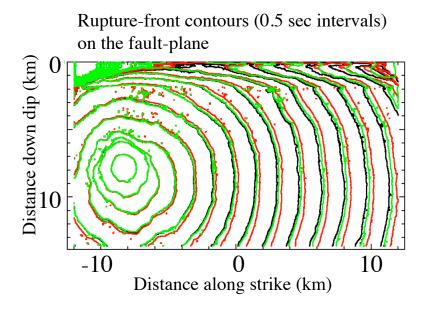
used spontaneous rupture simulations to produce '100' **M6.5 sources**

Work done for '100 runs' - Assigned 100 different 'values'

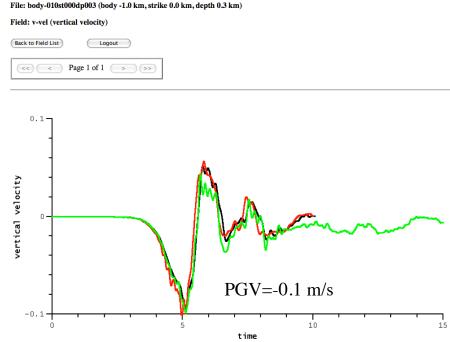


Developed Hybrid Initial-Conditions Method and Received Committee Approval

Features:


- *Gradual Forced Nucleation
- *Slip-weakening failure criterion
- *Rigid barriers at fault edges
- *24 km x 13.6 km fault plane with constant dip
- *Initial normal stress distribution: depth dependent
- *Initial shear stress distribution:
- 1-point statistics = Levy distribution
- 2-point statistics = von Karman power spectrum
- *M6.5
- *1-D 3-layer shear-modulus (and velocity) model
- *Elastic behavior

One Initial Stress-Conditions Realization from the '100 Runs' Exercise



Rupture front contour plot and ground motion from this one realization

Benchmark: 100_runs (ExGM 100 Runs Project)

<u>Unfiltered motion at YM station</u> Vertical-velocity (0.1 to -0.1 m/s) vs. time (0-15 secs)

