A Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling

Towards heterogeneous initial stress conditions

Christian Pelties

pelties@geophysik.uni-muenchen.de

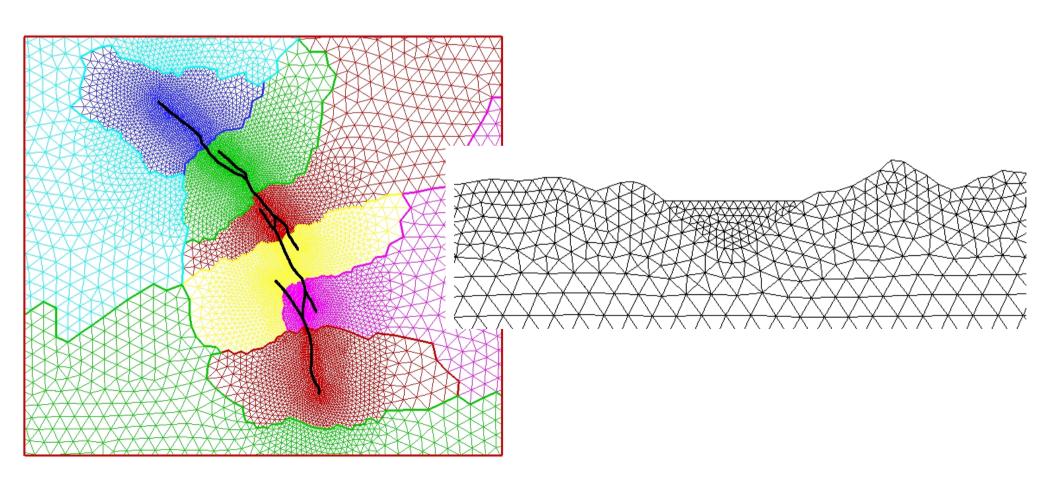
Dept. of Earth and Environmental Sciences – Geophysics LMU Munich

In collaboration with:

Josep de la Puente (BSC), Jean Paul Ampuero (CalTech), Martin Käser (Munich Re), Martin Galis (CUB), Jozef Kristek (CUB), Peter Moczo (CUB)

Why with the ADER-DG approach?

- High-accurate results of the rupture process no spurious oscillations in the spectra
- Enables use of unstructured meshes curved or kinked faults, branching, surface rupture, fault interaction
- High-accurate simulation of the wave propagation including heterogeneous media and topography (*hp*-adaptivity, ADER high-order time integration, local time stepping)
- Excellent scalability (32k+) large scale strong ground motion simulations



2D wave equations in velocity-stress formulation

$$\frac{\partial}{\partial t}\sigma_{xx} - (\lambda + 2\mu)\frac{\partial}{\partial x}u - \lambda\frac{\partial}{\partial y}v = 0,$$

$$\frac{\partial}{\partial t}\sigma_{yy} - \lambda\frac{\partial}{\partial x}u - (\lambda + 2\mu)\frac{\partial}{\partial y}v = 0,$$

$$\frac{\partial}{\partial t}\sigma_{xy} - \mu(\frac{\partial}{\partial x}v + \frac{\partial}{\partial y}u) = 0,$$

$$\rho\frac{\partial}{\partial t}u - \frac{\partial}{\partial x}\sigma_{xx} - \frac{\partial}{\partial y}\sigma_{xy} = 0,$$

$$\rho\frac{\partial}{\partial t}v - \frac{\partial}{\partial x}\sigma_{xy} - \frac{\partial}{\partial y}\sigma_{yy} = 0,$$

more compact form:

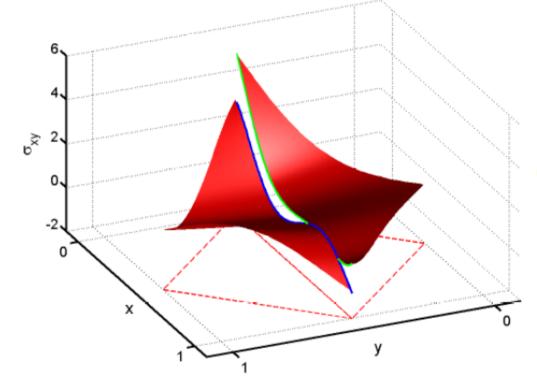
$$\frac{\partial Q_p}{\partial t} + A_{pq} \frac{\partial Q_q}{\partial x} + B_{pq} \frac{\partial Q_q}{\partial y} = 0 \quad \text{with} \quad \mathbf{Q} = (\sigma_{xx}, \sigma_{yy}, \sigma_{xy}, u, v)^T$$

Discontinuous Galerkin Approach

Numerical approximation of the solution:

$$\left(Q_h^{(m)}\right)_p(\xi,\eta,t) = \hat{Q}_{pl}^{(m)}(t)\Phi_l(\xi,\eta)$$

- Φ_I are othogonal basis functions
- diagonal mass matrix



Integrating the governing equations in space and time in the Discontinuous Galerkin (DG) framework gives

$$\int_{t}^{t+\Delta t} \int_{\mathcal{T}^{(m)}} \Phi_k \frac{\partial Q_p}{\partial t} dV dt + \sum_{j=1}^{3} \mathcal{F}_{pk}^j - \int_{t}^{t+\Delta t} \int_{\mathcal{T}^{(m)}} \left(\frac{\partial \Phi_k}{\partial x} A_{pq} + \frac{\partial \Phi_k}{\partial y} B_{pq} \right) Q_q dV dt = 0$$

where the numerical flux is given by

$$\mathcal{F}_{pk} = A_{pr} \int_{t}^{t+\Delta t} \int_{S} \Phi_{k} \tilde{Q}_{r} \, dS \, dt$$

Riemann problem

Standard wave propagation!

The state of the variables at the interface are given as

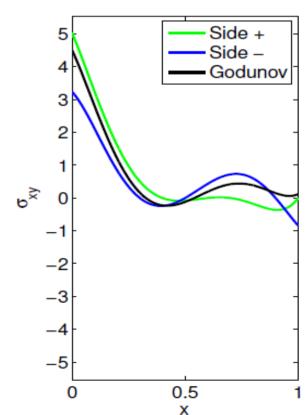
$$2\sigma_{xx}^{G} = (\sigma_{xx}^{-} + \sigma_{xx}^{+}) + \frac{\lambda + 2\mu}{c_{p}} (u^{-} - u^{+}) ,$$

$$2\sigma_{yy}^{G} = \frac{\lambda}{c_{p}} (u^{-} - u^{+}) + \frac{\lambda}{\lambda + 2\mu} (\sigma_{xx}^{-} + \sigma_{xx}^{+}) + 2\sigma_{yy}^{+} ,$$

$$2\sigma_{xy}^{G} = (\sigma_{xy}^{-} + \sigma_{xy}^{+}) + \frac{\mu}{c_{s}} (v^{-} - v^{+}) ,$$

$$2u^{G} = (u^{-} + u^{+}) + \frac{c_{p}}{\lambda + 2\mu} (\sigma_{xx}^{-} - \sigma_{xx}^{+}) ,$$

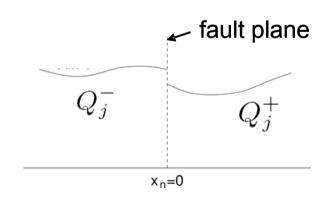
$$2v^{G} = (v^{-} + v^{+}) + \frac{c_{s}}{\mu} (\sigma_{xy}^{-} - \sigma_{xy}^{+}) ,$$

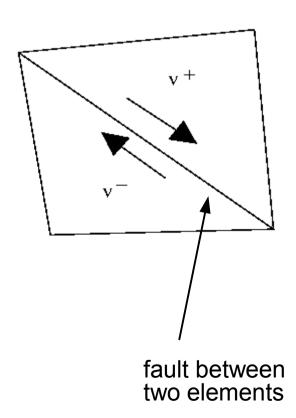


Dynamic Rupture within the Discontinuous Galerkin Approach

Treat dynamic rupture as a <u>boundary condition</u> using the flux term - solve inverse Riemann problem:

- flux provides information at element interface
- solve friction law
- in case of slip, impose traction and fault parallel velocities

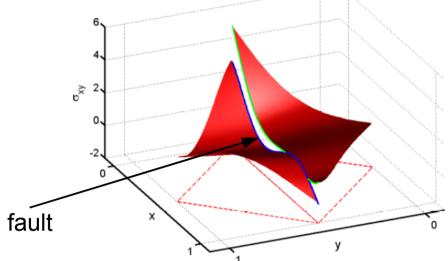




(de la Puente et al., 2009)

Riemann problem

At fault interface!



The state of the variables at the interface are given as

$$2\sigma_{xx}^{G} = (\sigma_{xx}^{-} + \sigma_{xx}^{+}) + \frac{\lambda + 2\mu}{c_{p}} (u^{-} - u^{+}) ,$$

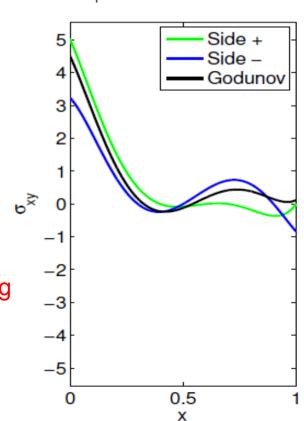
$$2\sigma_{yy}^{G} = \frac{\lambda}{c_{p}} \left(u^{-} - u^{+} \right) + \frac{\lambda}{\lambda + 2\mu} \left(\sigma_{xx}^{-} + \sigma_{xx}^{+} \right) + 2\sigma_{yy}^{+},$$

$$2\sigma_{xy}^{G} = (\sigma_{xy}^{-} + \sigma_{xy}^{+}) + \frac{\mu}{c_s} (v^{-} - v^{+}) ,$$

$$2u^{G} = (u^{-} + u^{+}) + \frac{c_{p}}{\lambda + 2\mu} (\sigma_{xx}^{-} - \sigma_{xx}^{+}) ,$$

$$2v^{G} = (v^{-} + v^{+}) + \frac{c_{s}}{\mu} (\sigma_{xy}^{-} - \sigma_{xy}^{+}) ,$$

Take imposed values regarding failure criterion!



To get the imposed state vector Q_{il} we follow three steps:

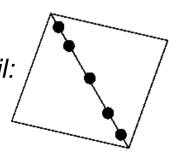
1. Evaluate failure criterion & impose traction $\tilde{\sigma}_{xy}$

Substitute the Godunov state σ_{xy}^G from linear elasticity with an imposed traction $\tilde{\sigma}_{xy}$ at the fault considering the Coulomb failure criterion!

$$\tilde{\sigma}_{xy,il} = \min \left\{ \sigma_{xy,il}^G, \mu_{f,il}(\sigma_{xx,il}^G + \sigma_{xx}^0) - \sigma_{xy}^0 \right\}$$

Side note:

This is done for each Gaussian integration point il:



To get the imposed state vector Q_{il} we follow three steps:

- 1. Evaluate failure criterion & impose traction $\tilde{\sigma}_{xy}$
- 2. Compute fault parallel velocities and slip rate

The imposed traction provides boundary conditions for the slip rates (velocities) on both sides!

$$\tilde{v}^{+} = v^{+} + \frac{c_{s}}{\mu} \left(\tilde{\sigma}_{xy} - \sigma_{xy}^{+} \right)$$
$$\tilde{v}^{-} = v^{-} - \frac{c_{s}}{\mu} \left(\tilde{\sigma}_{xy} - \sigma_{xy}^{-} \right)$$

The imposed slip rate is given by

$$\Delta \tilde{v} = \tilde{v}^+ - \tilde{v}^- = (v^+ - v^-) + \frac{c_s}{\mu} \left[2\tilde{\sigma}_{xy} - (\sigma_{xy}^- + \sigma_{xy}^+) \right]$$
$$\Delta \tilde{v} = \frac{2c_s}{\mu} \left(\tilde{\sigma}_{xy} - \sigma_{xy}^G \right)$$

$$ightharpoonup \Delta \tilde{v}
eq 0$$
 only if $\tilde{\sigma}_{xy}
eq \sigma_{xy}^G$

To get the imposed state vector Q_{il} we follow three steps:

- 1. Evaluate failure criterion & impose traction $\tilde{\sigma}_{xy}$
- 2. Compute fault parallel velocities and slip rate
- 3. Compute $\operatorname{slip} \Delta \, d$ and update friction coefficent

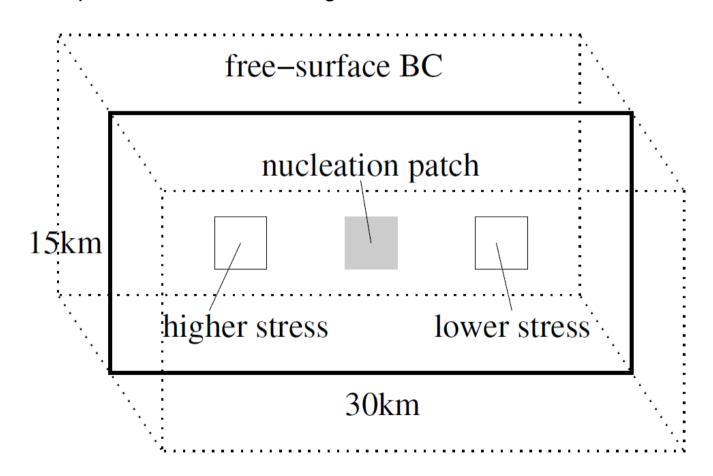
$$\mu_f = \begin{cases} \mu_s - \frac{\mu_s - \mu_d}{D_c} \Delta d & \text{if } \Delta d < D_c, \\ \mu_d & \text{if } \Delta d \ge D_c. \end{cases}$$

Gauss-Integration of flux:

$$\mathcal{F}_{pk} = A_{pr} \sum_{i=1}^{3N} \sum_{l=1}^{N+1} \omega_i^S \omega_l^T \Phi_k(\boldsymbol{\xi}_i) \tilde{Q}_{r,il}$$

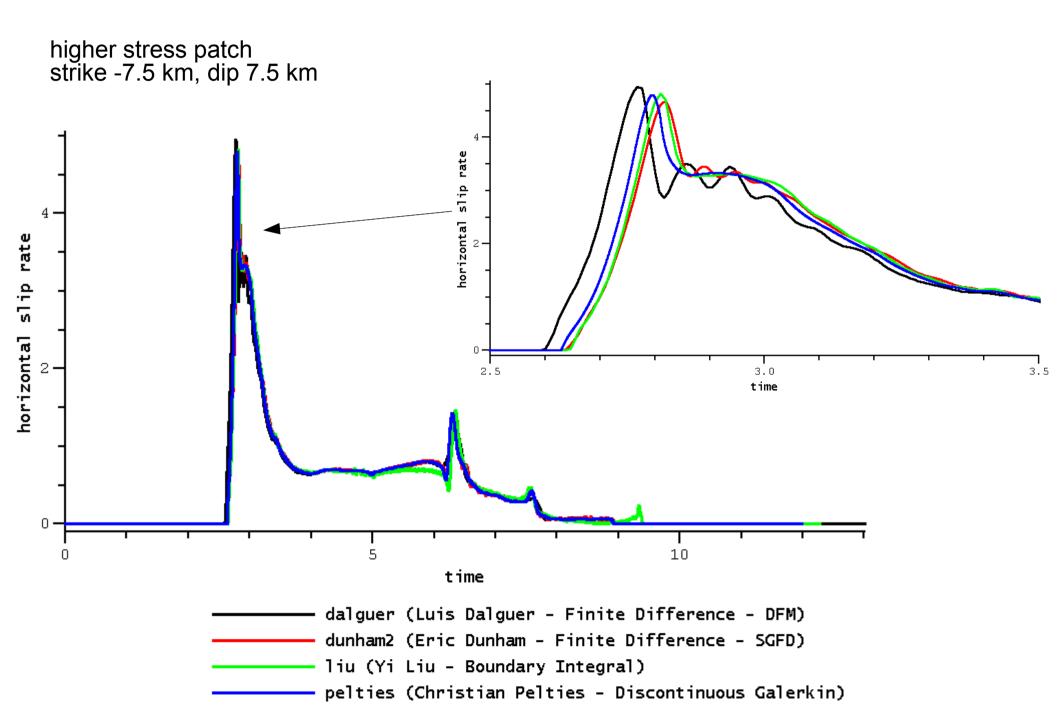
(Harris et al., 2009)

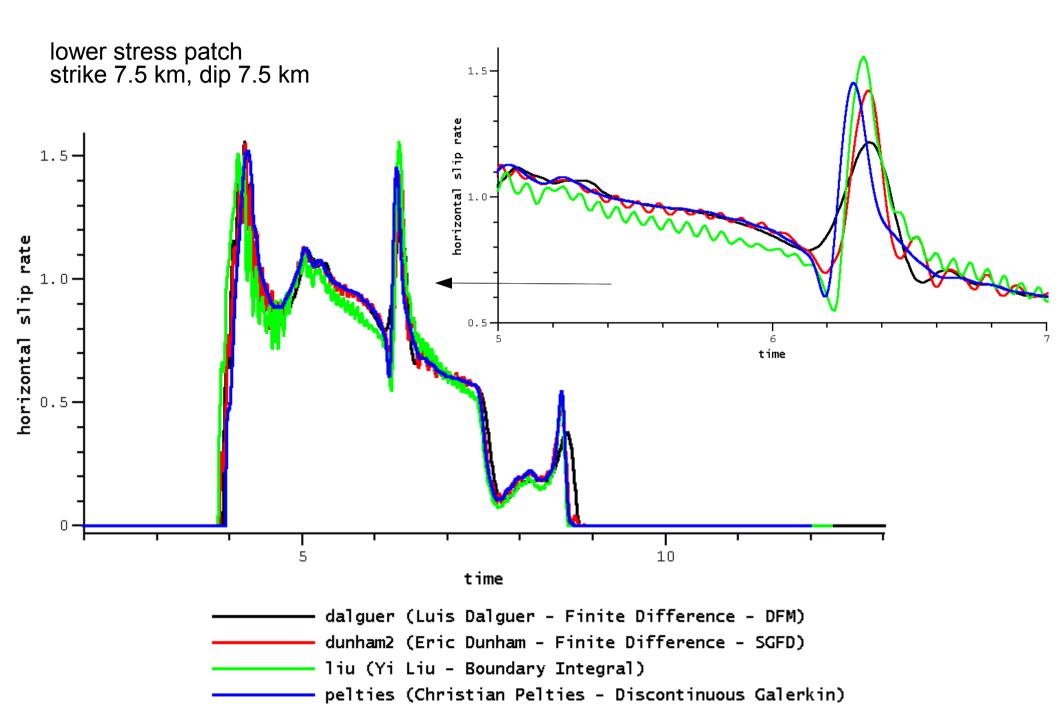
- spontaneous rupture propagation on a straight fault
- homogeneous fullspace
- linear slip weakening friction
- two patches of lower and higher initial stress

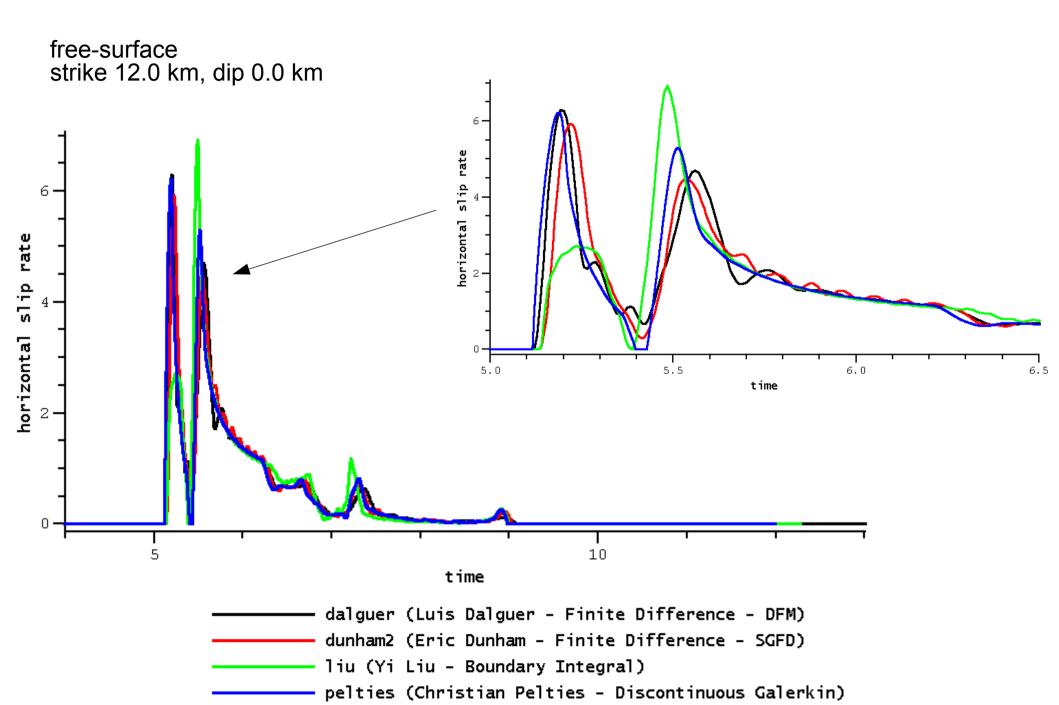


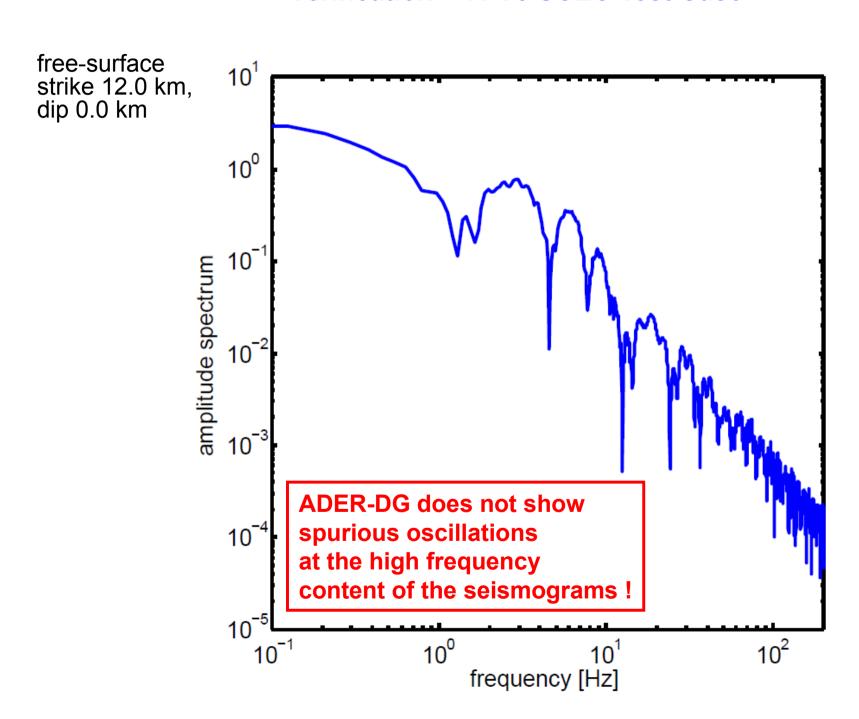
Mesh is aligned to the patches!

ADER-DG method order 4 and 200m triangles at the fault (tetrahedrons of 4000m in bulk)









Smooth Elliptical Nucleation Zone Benchmark

Upper right quarter of fault with elliptical nucleation zone:

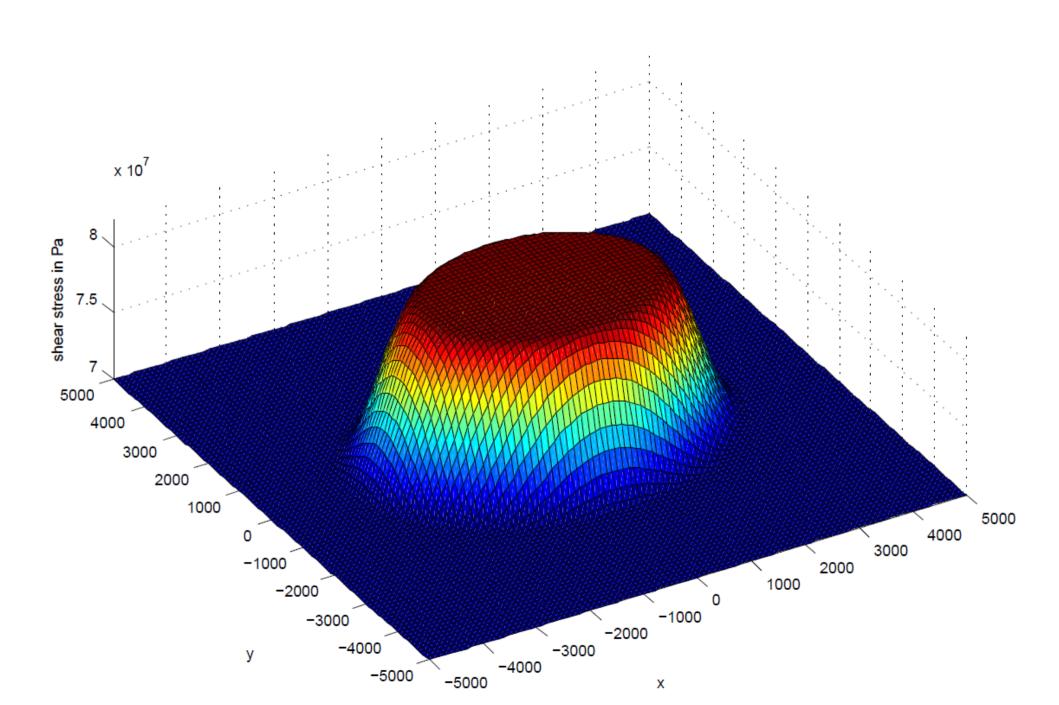


FEM-ASA: adaptive smoothing algorithm

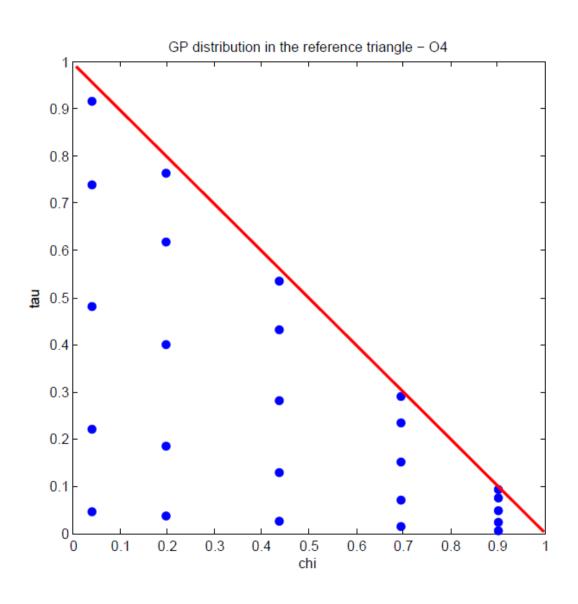
- Motivation: Reduce spurious high-frequency oscillations for FEM using TSN
- No Kelvin-Voigt damping necessary
- Applicable to standard FEM and FDM
- Ref:

Galis, M., P. Moczo, J. Kristek, and M. Kristekova (2010), An adaptive smoothing algorithm in the TSN modeling of rupture propagation with the linear slip-weakening friction law, *Geophys. J. Int.*, 180, 418–432.

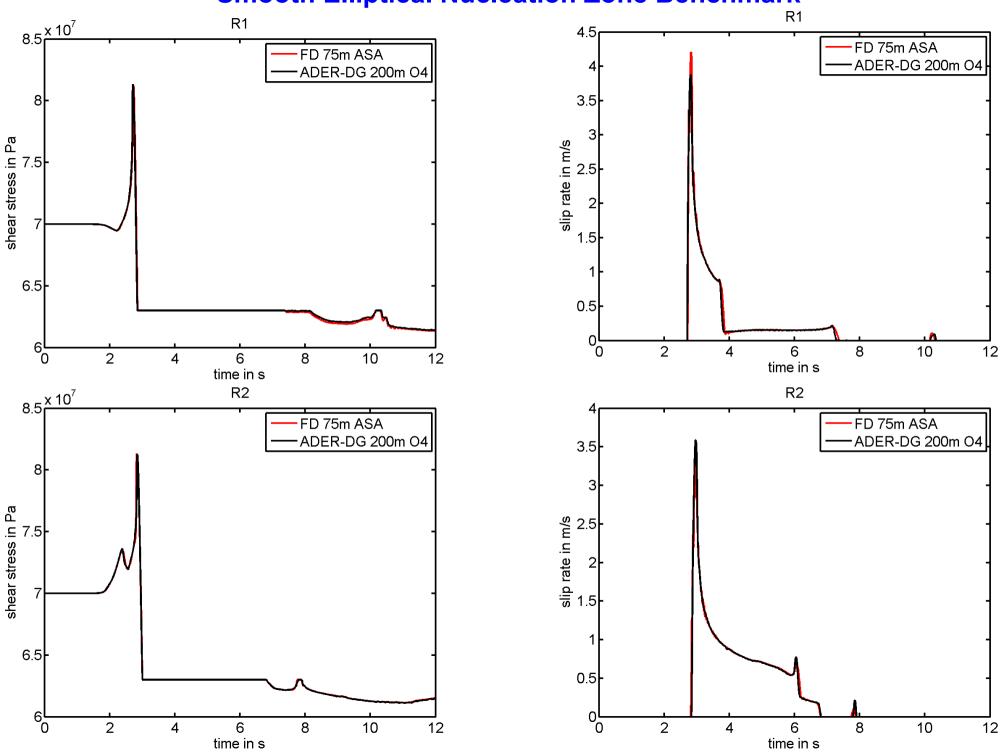
Smooth Elliptical Nucleation Zone



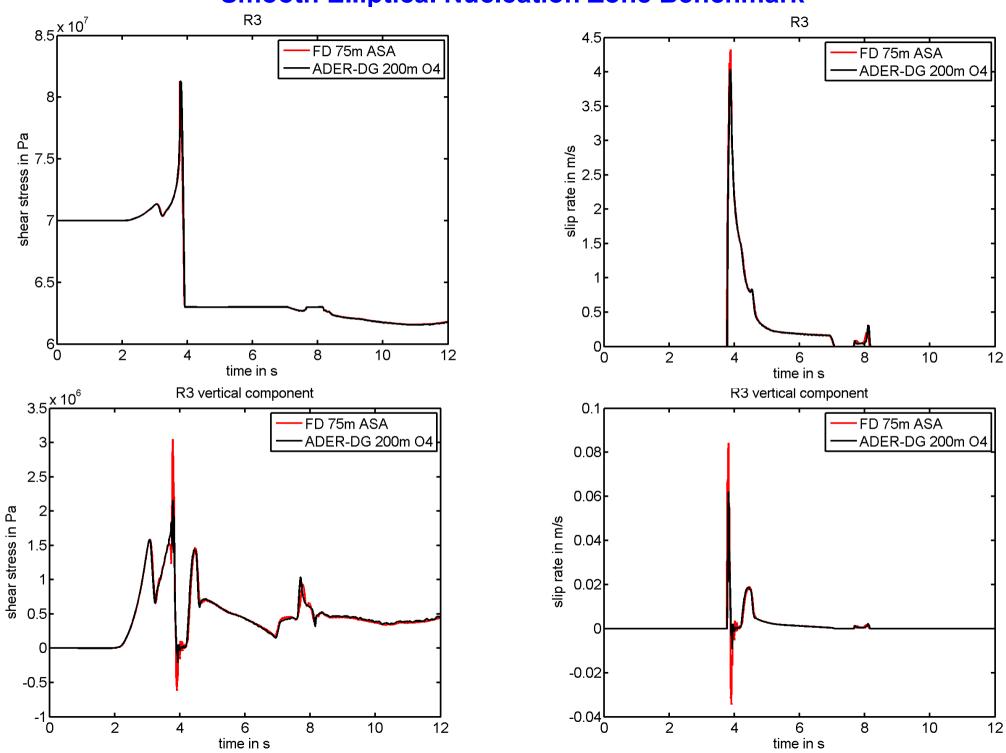
Gaussian Integration Point Location in the Reference Element

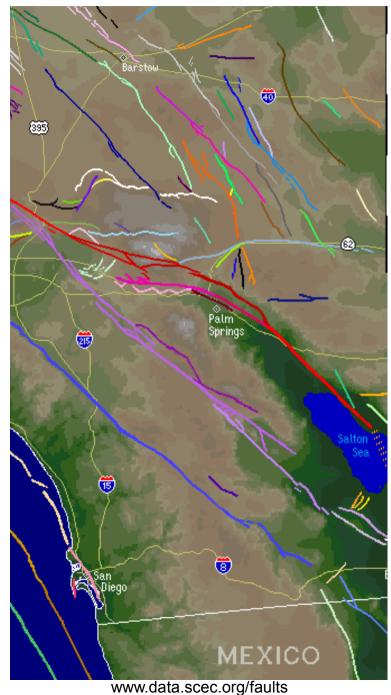


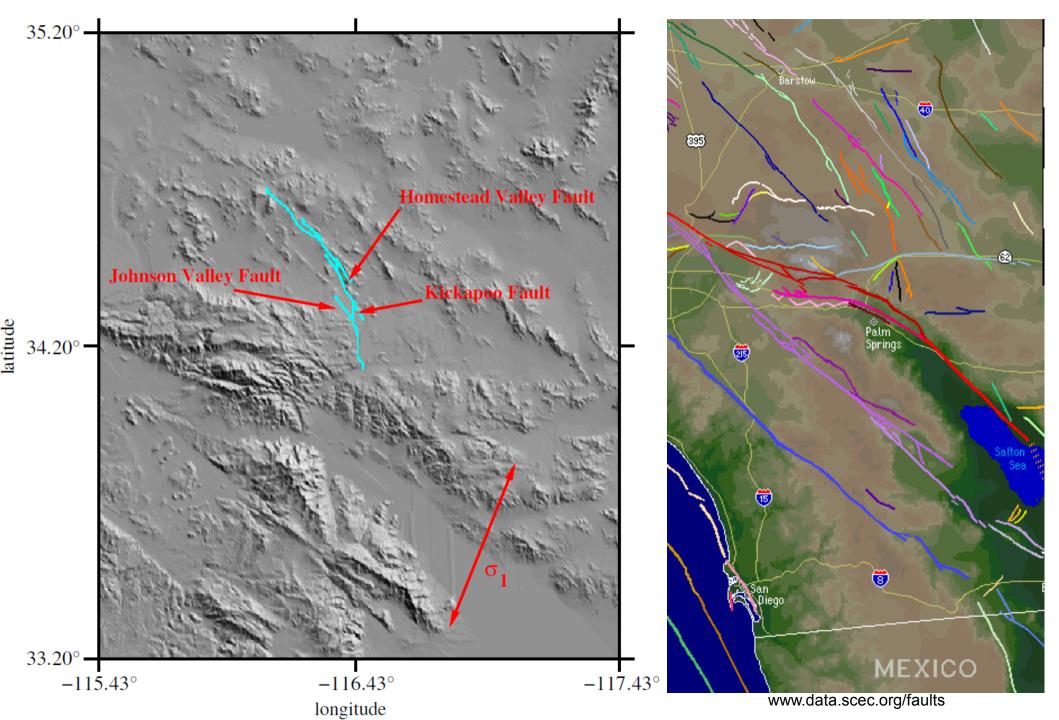
Smooth Elliptical Nucleation Zone Benchmark

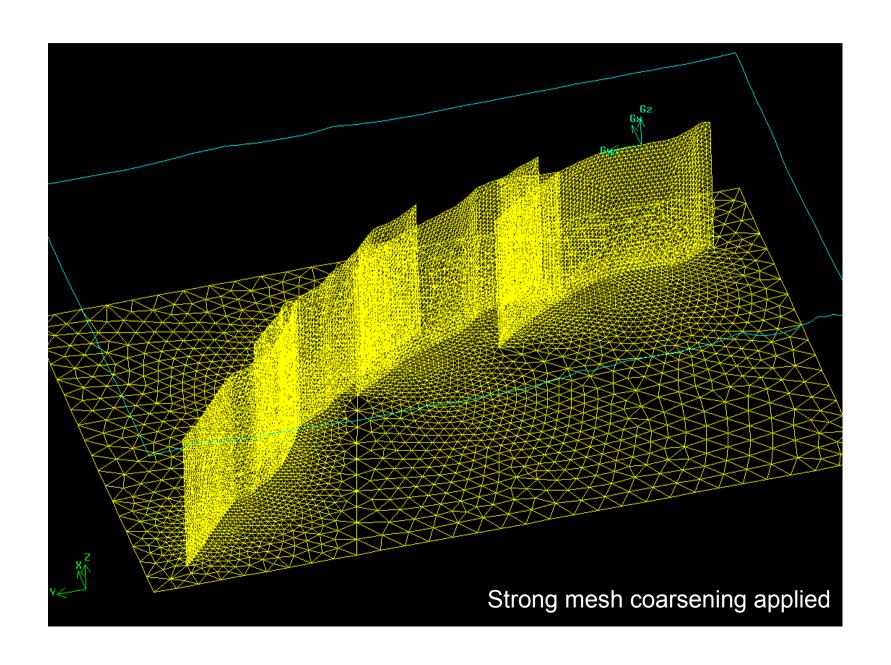


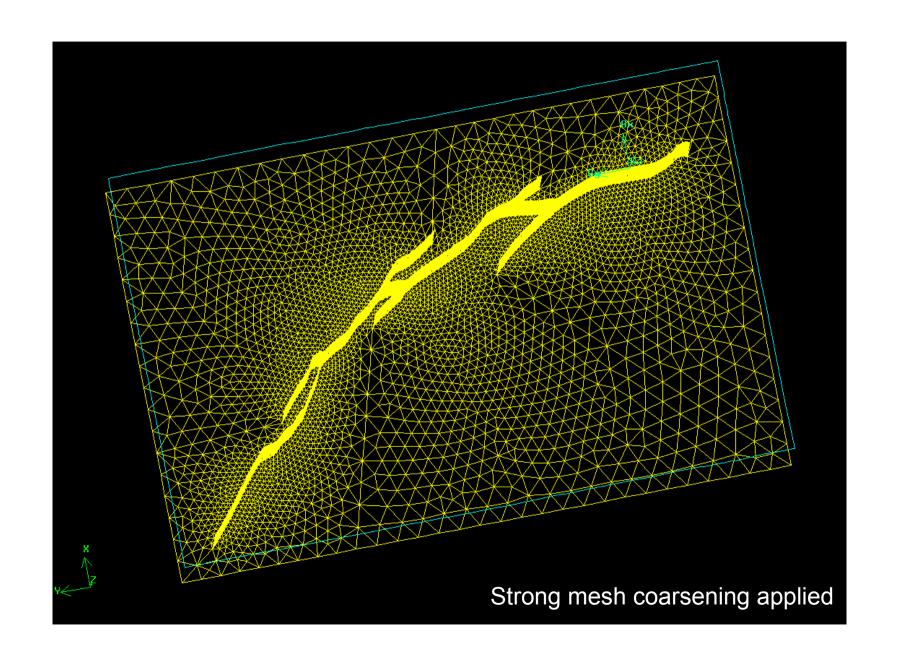
Smooth Elliptical Nucleation Zone Benchmark

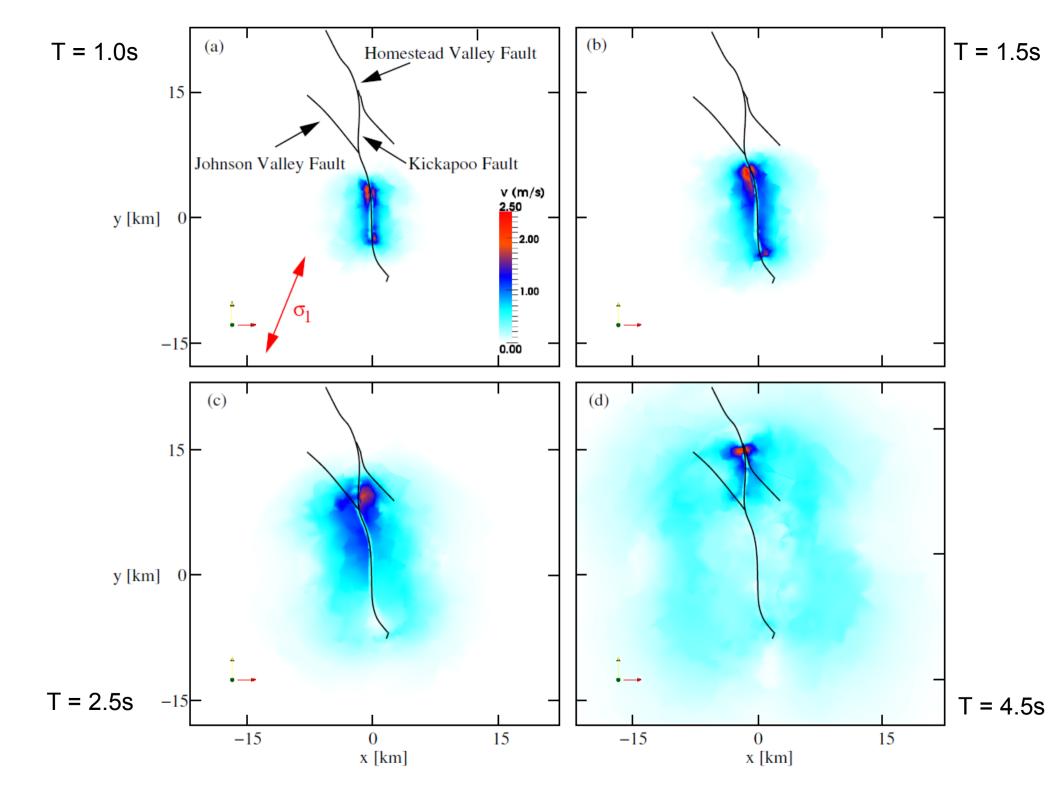


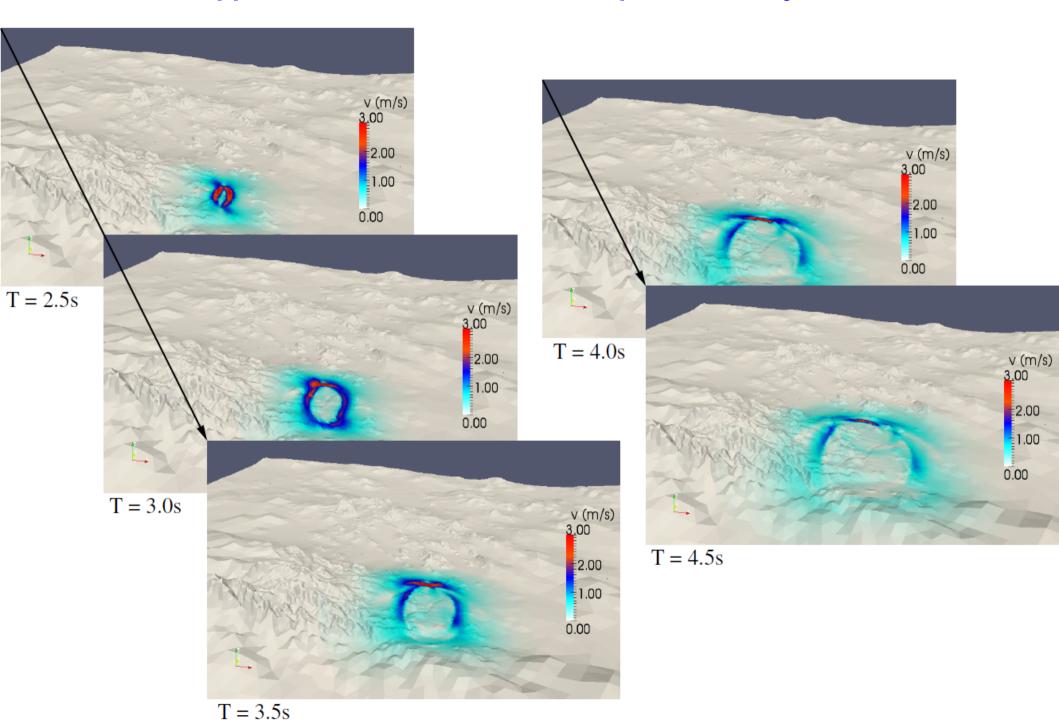












Summary

- New approach of implementing dynamic rupture via fluxes (J. de la Puente '09)
- Verification with the SCEC test (TPV3, TPV5) + smooth nucleation zone
- Bimaterial applications under Prakash-Clifton regularization (not presented)
- Application to complex fault structures with branches (1992 Landers)
- Method should allow surface rupture, fault branching, curved and kinked faults
- No spurious high-frequency contributions in the slip rate spectra
- hp-adaptivity help to adjust the resolution independently to fault and bulk

Outlook:

- Completion of TPV 16/17 and TPV 18-21 is essential
- More advanced friction laws: rate-and-state
- Applications

Pelties et al., (2011), Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR – Solid Earth, doi:10.1029/2011JB008857, in print.