Heterogeneous Initial Stress Benchmarks TPV16 and TPV17

Michael Barall

SCEC Dynamic Rupture Code Validation Workshop

February 6, 2012

TPV16-17 Fault Geometry

TPV16-17 have a vertical, right-lateral, strike-slip fault with heterogeneous initial stress conditions.

Off-Fault Stations

Modelers are asked to submit displacement and velocity as a function of time, for 12 stations on the earth's surface.

Since the fault is vertical, stations on the far side of the fault should have the same waveforms as the stations on the near side of the fault.

On-Fault Stations

Modelers are asked to submit slip, slip rate, and stress as a function of time, for 6 stations on the fault.

In addition, modelers are asked to submit the time at which each point on the fault begins to slip, from which we construct rupture contour plots.

TPV16-17 Parameters

Parameter selection follows our practice of reusing material from earlier benchmarks, so we build incrementally on prior work.

Linear Slip-Weakening Friction

When the fault is sliding, the shear stress τ at a given point on the fault is given by:

$$\tau = C + \mu \times \max(0, \sigma)$$

The time-varying coefficient of friction μ is given by:

$$\mu = \begin{cases} \mu_s + (\mu_d - \mu_s) \times D/D_c , & \text{if } D < D_c \text{ and } t < T \\ \\ \mu_d , & \text{if } D \ge D_c \text{ or } t \ge T \end{cases}$$

where D is the total distance the node has slipped, and t is the time since the start of the earthquake. The effect is:

- The coefficient of friction declines linear from μ_s to μ_d as the fault slips by distance D_c .
- At time T, the coefficient of friction drops immediately to μ_d (if it is not already μ_d). This only happens within a few hundred meters of the hypocenter.

TPV16 Initial Stress

Static Coefficient of Friction

Time of Forced Rupture

Slip Weakening Critical Distance

TPV17 Initial Stress

TPV17

Static Coefficient of Friction

Time of Forced Rupture

TPV17

Slip Weakening Critical Distance

Day Radius and the Problem of Nucleation

Day (1982) obtained the following formula, which gives the minimum radius R_D that a circular rupture must have, such that it is energetically favorable for the rupture to expand.

For typical parameter values used in spontaneous rupture simulations, the Day radius is about 3 to 4 km.

The nucleation problem is that, somehow, we must impose an artificial mechanism to get the size of the rupture up to the Day radius, at which point the rupture can be self-sustaining.

Two-Stage Nucleation Method

All of today's benchmarks use a new two-stage method of nucleation.

Zone of forced rupture

Forced rupture propagates at $0.7V_S$ to dotted circle (720 m), then $0.35V_S$ to solid circle (900 m). Forced rupture immediately reduces friction coefficient to μ_d .

(Distances shown are for TPV18-21.)

Because the Day radius is proportional to D_{C} , rupture propagation is energetically favorable once the rupture reaches the dotted blue circle.

Zone of reduced fracture energy

 D_C is linearly tapered from 0.04 m at dotted circle (360 m), to 0.40 m at solid circle (3600 m).

TPV16 Rupture Contours

TPV17 Rupture Contours

Stations 6 km Off-Fault


```
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)

cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)

duan (Benchun Duan - Finite Element - EQdyna)

kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)

kase (Yuko Kase - Finite Difference)

ma (Shuo Ma - Finite Element - MAFE)

somala (Surendra Somala - Spectral Element - SESAME)
```

All waveforms are filtered with a 3 Hz low-pass filter.

Stations 0.2 km Off-Fault


```
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)

cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)

duan (Benchun Duan - Finite Element - EQdyna)

kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)

kase (Yuko Kase - Finite Difference)

ma (Shuo Ma - Finite Element - MAFE)

somala (Surendra Somala - Spectral Element - SESAME)
```

All waveforms are filtered with a 3 Hz low-pass filter.

Stations On-Fault at Depth of 9.0 km

Distance along-strike

```
    barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
    cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)
    duan (Benchun Duan - Finite Element - EQdyna)
    kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
    kase (Yuko Kase - Finite Difference)
    ma (Shuo Ma - Finite Element - MAFE)
    somala (Surendra Somala - Spectral Element - SESAME)
```

Slip rate waveforms are filtered with a 3 Hz low-pass filter.

Stations On-Fault at the Earth's Surface

Distance along-strike

```
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
somala (Surendra Somala - Spectral Element - SESAME)
```


Waveform Comparisons for Codes

Waveform Comparison for Station 6 km Off-Fault


```
aagaard.2 (Brad Aagaard - PyLith v1.7.0a - Tet4 75m)
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
somala (Surendra Somala - Spectral Element - SESAME)
```


Waveform Comparison for Station 0.2 km Off-Fault


```
aagaard.2 (Brad Aagaard - PyLith v1.7.0a - Tet4 75m)
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
somala (Surendra Somala - Spectral Element - SESAME)
```


Waveform Comparison for Station On-Fault at Depth of 9.0 km

Distance along-strike

```
aagaard.2 (Brad Aagaard - PyLith v1.7.0a - Tet4 75m)
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
somala (Surendra Somala - Spectral Element - SESAME)
```


Waveform Comparison for Station On-Fault at the Earth's Surface

Distance along-strike

```
aagaard.2 (Brad Aagaard - PyLith v1.7.0a - Tet4 75m)
barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
somala (Surendra Somala - Spectral Element - SESAME)
```


Conclusion

TPV16-17 are designed to be like "TPV5 with random initial stress."

The codes agree well in contour plots, waveforms, timing, and amplitudes.

The contours show the rupture responding to the random initial stress field.

Thank You