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Talk Outline

|) The Case of Frictional Melts:
-Pseudotachylyte strength during and post formation

2) The Frictional Properties of an Exhumed Subduction Mélange
-Which lithologies control the “seismogenic zone”?
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What is the Strength of Pseudotachylyte in
Different Stages of the Earthquake Cycle?

(e) t=2.27 MPa
a

|) During Seismic Slip

2) Immediately Following Slip

Differential stress (MPa)
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During Seismic Slip

Spray 1987, 1988

First High-Velocity Rotary Shear Apparatus
used on Rocks

* A“Friction Welder”: Machine used to
weld metal pipes together

* Modified the apparatus for rocks
* Limitations: Could not accurately

measure the torque or shear stress
required to melt the rocks



During Seismic Slip

Shimamoto & Tsutsumi 1994
Tsutsumi & Shimamoto 1996

First High-Velocity Rotary Shear Apparatus that
could Measured Shear Stress

* Designed by Shimamoto-san and
Tsutsumi-san (Kyoto University)

Spray 1987, 1988

* First Experiments that Demonstrated
Dramatic Weakening During Earthquake
Slip Rates



During Seismic Slip

Shimamoto & Tsutsumi 1994
Tsutsumi & Shimamoto 1996

High-Velocity Frictional Testing Apparatuses
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During Seismic Slip

Limitations: - Normal Stress < ~25MPa
- Measuring conditions <| km depth
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During Seismic Slip

University of Liverpool , Andesite




During Seismic Slip

P HVR1360 - gypsum gouge (De Paola et al., unpubl.)
10 o, =0.80 MPa, V = 1.30 m s™' (flash heat., nanop. lubr., dehydr. & therm. press.)
' HVR1138 - anhydrite gouge (De Paola et al., unpubl.)
0,=0.82MPa, V=130ms ! (flash heat. & nanop. lubr.)
HVR1161 - dolomite gouge (ref. 10)
o, =0.81 MPa, V= 1.30 m s~ (flash heat., nanop. lubr., decarb. & therm. press.)
0.8 |
N411 - novaculite (ref. 8)
=5 MPa, V=0.1 m s (gel lubrication
-lE / o, (g )
o 06 F HVR178 - clay-rich fault gouge (ref. 9)
o 0,=0.6MPa, V=1.03m s! (flash heat., nanop. lubr. & dehydr.)
% HVR719 - serpentinite (Hirose & Bystricky, 2007)
Q o =2.6MPa, V=1.14 m s (flash heating & dehydr.)
O n
c 04F HVR439 - marble (ref. 7) o, = 12.1 MPa
o V=1.14 m s™' (nanop. lubr. & decarb.)
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Key Points

- All materials
become weak
during seismic slip



During Seismic Slip

Ujiie et al 2007b

Microstructural observations of
natural pseudotachylyte confirm very
low shear stresses

Calculate viscosity from composition
and melting temperature

Flow stress ~0.1 MPa



What is the Strength of Pseudotachylyte in
Different Stages of the Earthquake Cycle?

(e) t=2.27 MPa
‘ : :

|) During Seismic Slip

2) Immediately Following Slip

Differential stress (MPa)

00 05 10 15 20 25
Displacement (mm)

3) Years Following Slip




Immediately Following Slip

Three recent sets of experiments have examined the strength of pseudotachylyte.

Mitchell et al 2016 examined the strength of pseudotachylytes hosted in tonalities
and felsic mylonites. They found that the strength of the pseudotachylyte was as high
as intact host rock.
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Immediately Following Slip

Three recent sets of experiments have examined the strength of pseudotachylyte.
Proctor & Lockner 2016 produced pseudotachylyte in granite during stick-slip
triaxial experiments. They found that when pseudotachylyte formed that the fault was

stronger than the sliding strength (Byerlee friction).
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Immediately Following Slip

Three recent sets of experiments have examined the strength of pseudotachylyte.

Hayward & Cox 2017 produced pseudotachylyte in sandstone then reoriented the
sample and conducted another experiment. They found that where pseudotachylyte
was present that a new fault would form on a new surface.
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Immediately Following Slip

Three recent sets of experiments have examined the strength of pseudotachylyte.
ALL EXPERIMENTS SHOW THAT PSEUDOTACHYLYTES ARE STRONG!!!

Imply that pseudotachylytes should be easily preserved in rock record.
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What is the Strength of Pseudotachylyte in
Different Stages of the Earthquake Cycle?

(e) t=2.27 MPa
a

|) During Seismic Slip

2) Immediately Following Slip

Differential stress (MPa)
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Years Following Slip
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If pseudotachylytes are strong, and large magnitude earthquakes are ubiquitous in
subduction zones, then we should find pseudotachylyte all the time.



Years Following Slip
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Years Following Slip
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Why are there so few pseudotachylytes in exhumed subduction zones!?
POSSIBILITIES
|) They are hard to find Kirkpatrick et al 2009

2) They don’t form (other mechanisms occur during seismic slip) Sibson & Toy 2006

Kirkpatrick & Rowe 2013

3) They are replaced by other minerals This Study



Years Following Slip
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Why are there so few pseudotachylytes in exhumed subduction zones!?
POSSIBILITIES
|) They are hard to find Kirkpatrick et al 2009

2) They don’t form (other mechanisms occur during seismic slip) Sibson & Toy 2006

. Kirkpatrick & Rowe 2013
3) They are replaced by other minerals This Study




Years Following Slip
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Phillips et al 2019

The Mugi Mélange is an exhumed analogue of present day subduction at Nankai.

Subducting sediment forms a zone of distributed shear between the downgoing plate
and the overriding accretionary prism.This zone of distributed shear is the host for
megathrust earthquakes and shallow tremor



Years Following Slip

Seismic features are located at three sites in the Mugi Mélange:

l) Pseudotachylyte exists at the interface between the accretionary prism and the mélange
2) A fluidized ultracataclasite exists along the upper contact of a basaltic slab
3) Reworked pseudotachylyte exists along the upper contact of a basaltic slab
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Phillips et al 2019 ; Adapted from Shibata et al 2008



Years Following Slip
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Altered basalt has well developed faults with widths ranging from 100’s of ym to mm.

Composed of plagioclase, chlorite, and Ti-oxides.
Deformation features are localized.



Years Following Slip
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Reworked pseudotachylyte exists
within the altered faults and is
evidence for seismic events.




Years Following Slip
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Years Following Slip

Phillips et al 2019

Along the margins of the pseudotachylyte clasts alteration to chlorite occurs

Chlorite is weak compared with most rocks and minerals (p = 0.3)
e.g. Behnsen & Faulkner, 2012



Years Following Slip
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We calculate the rate of alteration of pseudotachylyte based on dissolution experiments on

basaltic and rhyolitic glasses in seawater

Originally used to calculate how quickly basaltic glasses at the surface dissolve and enter the
ocean (for Si, Fe, and Mg budgets)



Years Following Slip
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Hydration Rates:
- Pseudotachylytes are replaced by clay minerals faster than megathrust earthquake cycle

- Permanently weakens fault allowing for reactivation and removal from rock record



Years Following Slip
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Is this a Common Process?

YES! Most pseudotachylytes found today are not fresh and have been replaced by some
form of phyllosilicate phase



What is the Strength of Pseudotachylyte in
Different Stages of the Earthquake Cycle?
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Differential stress (MPa)




Talk Outline

|) The Case of Frictional Melts:
-Pseudotachylyte strength during and post formation

2) The Frictional Properties of an Exhumed Subduction Mélange
-Which lithologies control the “seismogenic zone”?



The Seismogenic Zone
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The Seismogenic Zone

Distance from deformation front (km)
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Subduction Seismogenic Zone:

- Thermally controlled locked zone between ~100 and 350 °C



The Seismogenic Zone

Subduction Seismogenic Zone:

- Disconnect between measured rate-and-
state frictional properties for common
subduction zone materials and observed
seismogenic zone
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Ancient Earthquakes
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The Mugi Mélange:
- 2 preserved ancient earthquakes hosted in altered basalt

- Evidence of distributed deformation in the shale
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Phillips et al 2019



Frictional Properties

Phillips et al in review
Simplified Microstructures:

- Altered basalt has localized faults: hosted earthquakes

- Shale has distributed deformation: evidence for fault creep

Hypothesis: Altered basalt is velocity weakening and shale is velocity strengthening




Frictional Properties
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Triaxial Friction Experiments:
- Tested frictional properties of altered basalt and shale at in situ conditions
(T = 150°C,P =120 MPa,A = 0.36 or 0.7)

- Shale is weaker than altered basalt



Frictional Properties

Rate-and-State Properties:

- Altered basalt exhibits
velocity-weakening behavior

- Shale exhibits velocity-
strengthening behavior
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Frictional Properties
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