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Earthquake and fault friction BN w8 Tk -
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An earthquake occurs when stress

exceeds the fault strength. g

Unfortunately we don’t know the stress, e AN
strength, and D, on seismogenic fault. e WY I M

Normalized slip, slip/D,,
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Constrain strength on faults B BAEERE s

heat flow measurements stress orientation: 9 45~60°
(Hardebeck, 2015)

< AlapanTrench  (Gao & Wang, 2014)
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Long-term average Apparent friction coefficient : u’' < 0.15

Experiments of rock samples

Postseismic drilling measurements (e.g. temperature)
Seismic studies/Rate-state simulations

» Dynamic source parameters of large earthquakes
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Frictional/dynamic source parameters B BRI EAE s

Fault T Ida, 1972 To determine Dy requires deriving stress
strength history during coseismic ruptures, which is
often approached by the following:
. 1. Kinematically inferred stress
Initial stress <, _ Aty ,
history/Dg from data.
2. Dynamic model to search for best-fit
Dynamic Do
stress Tq ~ - 3. Near-field measurement of fault-
c Sl . ) LR
Critical slip P parallel ground displacement (Dy’, Dy”)
distance

* Dy:1-500cm
* Scale with final slip D, = k u, where k ranges from ~0.1 to ~1 (Tinti et al.,
2005)
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Trade-off between strength/D, Wt

A 1 Cmanbem e Model A (short dc)
Amplitude Spectra
Fault Ida, 1972 P P Model B (long dc)
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Previous approaches suffered from the trade-off between the strength and D,. The
product of the two yields fracture energy that can be determined robustly. However,
separating them is extremely difficult.
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A new method to remove the trade-off S, TELEIE coronsicon

Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE  Constraining Frictional Properties on Fault by Dynamic

2018 A single parameter (e.g.
ground velocity) leads to

101029/2017)8015414 Rupture Simulations and Near-Field Observations trade-off, while multiple

Key Points: Huihui Weng' | ' and Hongfeng Yang'?

Rupture speed
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Self-arresting
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Strength drop
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parameters with different
trends can remove the

trade-off
15 ‘
e
0.35 05
Misfit
Slip + Rupture Speed
Self-arresting

| y

Using the 2015 Nepal
earthquake as an
example

C (%) C (%)
Slip weakening distance
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Critical distance during the Nepal EQ B merEAt e

85.0° 86.0°

84.0°

28.0°

27.0°

Galetzka, et al., 2015, Science

84° 85° 86
Weng and Yang, 2018, JGR

Average dy ~0.6 m, 7, — 74, = 4.8 MPa Do =5 m (?7?7?)
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The 2012 M,, 7.6 Nicoya earthquake B, BB o
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» Anticipated by locking models
« Well recorded by near field measurements (high/low rate GPS + strong
motion)
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Dynamic rupture parameters

T

A

T

To

Ta

T4 = Constant

Y

slip To = BAT + T4

s = (1 + 57l — [Ta]) + [74l

Kinematic slip was used to calculate static stress
drop, assuming a constant dynamic/final stress

We start with an assumed effective normal
stress, and then search for the best-fit value to

determine strength (S) and dy (C)
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Comparison of data and synthetic E e -

(==

(a) strike—normal (b) along-stirke (c) vertical

oy ol A2 Both amplitudes and
Ve D\ AN shapes match very well with

el Vs Dt::: data. Slightly worse on
v T ‘f K :: - horizontal components.
QSEC 7.3cm/s 5.9cm/s A 7.56cm/s

0O 10 20 30 40 50 60 O 10 20 30 40 50 60 O 10 20 30 40 50 60

160
g |2 Synthetics match well with
= 120p¥ .
campaign GPS data
% 80
£
E * For each run, we quantify the misfit between
B along strike distance (km) synthetic static (displacement) and high-rate
’ —> GPSdaa  ——> Model GPS (velocity) and data
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Seismic ratio

Heterogeneous or homogeneous D,

e =

(a) heterogeneous D,
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Although
heterogeneity of
friction should exist
on faults, near-field
data may not be able
to distinguish. Here
we tested cases with
heterogeneous and
homogenous
distribution of D, the
average value is
close.

The best-fit model yields Dg=0.12 u (D, =0.25 m), S = 0.4 (T; — 74 = 3.4 MPa)
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Average Strength Drop (MPa)

Low strength

(c) strengh drop
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Dy is scaled with slip and thus displays same
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pattern as final slip. The peak value is 0.5 m.

By assuming the dynamic friction coefficient of
0.2 or lower, strength is estimated to be lower

than 7.5 MPa on average, indicating near-
lithostatic pore pressure on the megathrust.
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Seismic observations indicate high P B mrraar
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Audet and Schwartz, 2013

Coseismic velocity reduction: NCC
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Stress (MPa)

Slip-dependent vs rate-dependent B RE Ak SR—
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»  Although featuring different parameterizations, RS laws exhibit slip weakening under seismic slip rates;
» Dynamic rupture simulations using rate- and state-dependent friction law can obtain similar rupture process

with simulations using linear slip-weakening law under the same fracture energy;

» Under the same fracture energy, RS friction laws with higher initial weakening rates at small slip lead to

more energetic rupture fronts and consequent higher rupture speeds compared to the SW law. The
differences are slight on planar faults, but can be significant on nonplanar faults
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Slip weakening curves from laboratory experiments F e -

Power law slip-weakening law:
D\P

f=Ffs—Us—fo(3)

Fracture energy:

G =0n(fs—fa)Dop/(p + 1)

p>0,5 o .
» For linear slip-weakening: p=1
g » From laboratory experiments, the
p=0.2 range for the exponent p 1s 0.2-0.5.
5 3 5 D_O =0.25m
D/D, (Di Toro et al., 2011) T, — 14 = 3.4 MPa

Assuming that fracture energies are well constrained by dynamic rupture simulations using the linear
slip-weakening law, considering the range for exponent p of 0.2-0.5, the product of D, and strength
drop can be underestimated by a factor of 1.5-3.



Slip weakening curves from laboratory experiments I TR

Exponential slip-weakening law:
In(0.05)D

f=Ffa+ s~ foexp=, )
Fracture energy:
G =0.330,(fs — fa)Do

(Mizoguchi et al., 2007)

G A PO D, =0.25m
(Di Toro et al., 2011) T, — 14 = 3.4 MPa
Assuming that fracture energies are well constrained by dynamic rupture simulations using the linear

slip-weakening law, considering the exponential slip-weakening law, the product of D, and strength
drop can be underestimated by a factor of 1.5.



Conclusions
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. We derive frictional parameters (strength drop

and D) on seismogenic faults

Based on constraint from near-field ground
displacement and velocity recordings, the
best-fit model yields an average D, of 0.25 m
(peak 0.5 m) and strength of ~7.5 MPa
(maximum 20 MPa) for the Nicoya EQ. D, of
0.6 m for the Nepal EQ.

Small difference between heterogeneous and
homogeneous distribution of Dy

Slightly underestimate comparing to non-
linear slip weakening law
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Ongoing efforts — higher frequency M -

(a) strike—normal (b) along-stirke (c) vertical
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