Probabilistic Fault Displacement project update

Christine Goulet, Executive Director for Applied Science Yongfei Wang, Post-doctoral Researcher SCEC, USC

> Dynamic Rupture Group Workshop Jan. 8, 2020 Pomona, CA

Driver: risk to distributed infrastructure (SCEC5 theme)

Probabilistic fault displacement critical for

- Buried gas lines
- Roads and bridges
- Electric distribution systems
- Water pipes, tunnels, aqueducts

Complex problem with limited empirical dataset.

SCEC contributions

- Earthquake rupture forecasts (UCERF)
- Geologic knowledge
- Simulation-based displacement estimates

Ridgecrest Sequence, damage to buried pipes

M6.4 trace

Pictures from GEER report rev. 2, Stewart et al. 2019

M7.1 trace

Seismic Risk Assessment and Management of Natural Gas Storage and Pipeline Infrastructure in CA (funding from CEC, with UCLA-based NHR3)

- Scientific Goal:
 - Quantifying near-fault displacements using simulations
 - Supplement available observed data on near fault displacements to be included in probabilistic fault displacement hazard analysis codes
 - Constrain
 - Main trace displacements
 - Secondary displacements
 - Strains at intermediate distance
 - After-slip
 - Uncertainty
 - Use dynamic rupture modeling

Oct. 2019 workshop: critical issues, data needs, interface plans

- SCEC researchers: geology, geodesy, kinematic and dynamic rupture modelers, ground motion modelers (academic, CGS and USGS)
- Broad community of stakeholders: gas and electric utilities, CalTrans, CA high-speed rail, geologists, research engineers, hazard modelers, consultants
- Presentations and group discussions
 - industry applications and needs,
 - database development,
 - currently available and proposed new models,
 - fault rupture simulations (kinematic and dynamic),
 - fundamental and applied research needs
 - short term (2020 SCEC Collaboration plan)
 - long term

Framework of dynamic rupture simulation

• **Physics-based approach:** Solving for spontaneous dynamic earthquake rupture as non-linear interaction of frictional failure and seismic wave propagation

Simulation results from dynamic ruptures

Fault geometry (roughness and nonplanar faults)

Fault roughness can reproduce broad-band fault displacements

Off-fault nonlinearity-plasticity

Southern California Earthquake Center

Off-fault nonlinearity-microfracture

Microfracture can also mimic observed off-fault deformation

Klinger et al., 2018

Validation metrics with rupture dynamics

1. Scaling laws (e.g., magnitude, surface displacement, subsurface displacement, maximum/average surface displacement) (first-order validation with whole dataset) 2. Fault displacement vs onfault distance ratio (first-order validation with whole dataset; subset for case-study validation)

3. Off-fault deformation and off-fault deformation ratio (histogram) (whole dataset/ subset (case validation), e.g., Landers, Hector Mine, Ridgecrest)

Wells and Coppersmith, 1994

1/14/20

Southern California Earthquake Center

Research questions examples and interfaces

Questions

- Can the current best science products replicate observations? How to define validation approach and metrics?
- How can we efficiently model the fault deformation zone? What complexity can we accommodate (short and long term)?
- What are the most appropriate and sufficient material mechanics to use?
 - Continuum mechanics and plasticity
 - Fracture mechanics
- How to develop constraints on input parameters (stress, geometry, friction, plasticity parameters, etc.)? This also requires seismology, geodesy, rock mechanics...
- How to quantify uncertainty of complex models (unconstrained parameter space)?
- $_{\odot}$ How can we improve recon data collection to support research?
- Interfaces (cross-pollination)
 - Dynamic Rupture Group (Harris et al.),
 - $_{\odot}$ Stress and Deformation Over Time (SDOT),
 - Dynamic ruptures validation group (Withers et al.),
 - Sequences of Earthquakes and Aseismic Slip (SEAS TAG)
 - ERFs (UCERF and EQ simulators), EEII, other validation groups, etc.