

Presentation for the March 10, 2008 SCEC Workshop Pomona, CA

SCEC 3D Rupture Dynamics Code Validation Workshop

Project Coordinator

Ruth Harris, U.S. Geological Survey.

Software Engineer

Michael Barall, U.S. Geological Survey and Invisible Software.

Modelers

Brad Aagaard, U.S. Geological Survey.

Jean Paul Ampuero, ETH.

Joe Andrews, U.S. Geological Survey.

Ralph Archuleta, UC Santa Barbara.

Victor Cruz Atienza, Universidad Nacional Autonoma de Mexico.

Luis Dalguer, San Diego State University.

Steve Day, San Diego State University.

Ben Duan, Texas A&M.

Eric Dunham, Harvard University.

Geoff Ely, UC San Diego.

Yoshi Kaneko, Caltech.

Yuko Kase, Geological Survey of Japan.

Nadia Lapusta, Caltech.

Yi Liu, Caltech.

Shuo Ma, Stanford University.

David Oglesby, UC Riverside.

Kim Olsen, San Diego State University.

Arben Pitarka, URS Corporation.

Daniel Roten, San Diego State University.

Seok-Goo Song, URS Corporation.

Elizabeth Templeton, Harvard University.

SCEC 3D Rupture Dynamics Code Validation Workshop

Monday, March 10, 2008 Kellogg West Conference Center, Pomona, CA Valley Vista Room

Convener: Ruth Harris

10:30-10:45	Introduction	Ruth Harris
10:45-11:15	New Code – FaultMod	Michael Barall
11:15-12:15	Rate-State Benchmarks: Description, Results & Discussion	Eric Dunham
12:15-1:15	Lunch	
1:15-2:00	Slip-Weakening Benchmarks: Description, Results & Discussion	Ruth Harris
2:00-2:30	Benchmark Boundary Assumptions: Implications for Results	Brad Aagaard
2:30-3:00	Numerical Convergence: Implications for Results	Yoshi Kaneko
3:00-3:30	Break	
3:30-5:00	General Discussion	AII
5:00	Adjourn	

Overall Goal of the SCEC Code Validation Group

Compare the 3D methods currently being used by SCEC scientists to simulate (spontaneous) rupture dynamics

Some Specific Objectives

Understand if our methods are producing the same results when using the same assumptions about friction, crustal structure, fault geometry, etc.

Produce results for the "Joe Andrews" Yucca Mountain normal-faulting benchmark, to compare with Joe's 2D simulations.

(Harris & Archuleta, EOS, August 24, 2004)

(Harris & Archuleta, EOS, August 24, 2004)

(Harris & Archuleta, EOS, August 24, 2004)

Code Comparison Strategy Start simply

Spontaneous
rupture on a
vertical strike-slip
fault set in a
homogeneous
(materials)
Fullspace

homogeneous initial stresses

slip-weakening friction

Some Results

Incrementally add complexity

Rupture on a
Vertical Strike-Slip
fault set in a
Homogeneous
(materials) Halfspace,
Homogeneous
initial stresses,
Slip-weakening
friction

Rupture on a
Vertical Strike-Slip
fault set in a
Homogeneous
(materials) halfspace,

Heterogeneous
Initial stresses,
Slip-weakening
friction

Rupture on a
Vertical Strike-Slip
fault set in a
Heterogeneous
(Materials) halfspace,
homogeneous

homogeneous initial stresses, Slip-weakening friction

Incrementally add complexity

Rupture on a
Vertical Strike-Slip
fault set in a
Homogeneous
(materials) halfspace,

Depth-dependent

Initial Stresses,

Slip-weakening friction

Rupture on a
Vertical **Dip-Slip**fault set in a
Homogeneous
(materials) halfspace,
Depth-dependent
initial stresses,
Slip-weakening
friction

Rupture on a

Dipping Dip-slip
fault set in a

Homogeneous
(materials) halfspace,
Depth-dependent
initial stresses,
Slip-weakening

TPV8 TPV9

Incrementally add complexity

Rupture on

a vertical

strike-slip fault

set in a

Homogeneous

(materials)

Fullspace,

Homogeneous initial stresses,

Rate-state friction

TPV101

Rupture on

a vertical

strike-slip fault

set in a

Homogeneous

(materials)

Halfspace

Homogeneous

initial stresses,

Rate-state friction

TPV102

The SCEC Code Validation Website*

http://scecdata.usc.edu/cvws/

^{*}Funding from the U.S. Dept. of Energy Extreme Ground Motion Project

Today's Benchmarks

The Problem,
Versions 101 and 102
The Problem,
Versions 8 and 9

Courtesy of Eric Dunham

The Problem, Versions 101 and 102 (February-March 2008)

Rate-State Friction Dynamic Rupture

whole-space

half-space

The Problem, Versions 8 and 9 (February-March 2008)

Slip-weakening Dynamic Rupture with Depth-Dependent Stresses Pathway to the YM Simulations

SCEC 3D Rupture Dynamics Code Validation Workshop

Monday, March 10, 2008 Kellogg West Conference Center, Pomona, CA Valley Vista Room

Convener: Ruth Harris

10:30-10:45	Introduction	Ruth Harris
10:45-11:15	New Code – FaultMod	Michael Barall
11:15-12:15	Rate-State Benchmarks: Description, Results & Discussion	Eric Dunham
12:15-1:15	Lunch	
1:15-2:00	Slip-Weakening Benchmarks: Description, Results & Discussion	Ruth Harris
2:00-2:30	Benchmark Boundary Assumptions: Implications for Results	Brad Aagaard
2:30-3:00	Numerical Convergence: Implications for Results	Yoshi Kaneko
3:00-3:30	Break	
3:30-5:00	General Discussion	AII
5:00	Adjourn	

The Problem, Versions 8 and 9

Pathway to YM

Incrementally add complexity

Rupture on a Vertical Strike-Slip fault set in a

Homogeneous (materials) halfspace,

Depth-dependent Initial Stresses,

Slip-weakening friction

Rupture on a Vertical Dip-Slip fault set in a Homogeneous (materials) halfspace, Depth-dependent initial stresses, Slip-weakening friction

TPV9

Rupture on a **Dipping** Dip-slip

fault set in a

Homogeneous (materials) halfspace, Depth-dependent

initial stresses,

Slip-weakening friction

TPV10-12

The Problem, Version 8

The Problem, Version 9

Source Physics for The Problem, Version 8

Source Physics for The Problem, Version 9

Rupture Dynamics Code Validation

On-Fault Station Locations for The Problem, Versions 8 and 9

- 3 Stations on the Earth's surface are at :
 - 0, +4.5 km, +12.0 km along-strike distance, and 0 km down-dip distance
- 5 Deeper Stations are at:
 - 0 km along-strike distance, and +4.5 km, +7.5 km, +12.0 km down-dip distance
 - 4.5 km along-strike distance, and 7.5 km down-dip distance
 - 12 km along-strike distance, and 7.5 km down-dip distance

Rupture Dynamics Code Validation

Off-Fault Station Locations for The Problem, Versions 8 and 9

14 Off-fault Station Locations

8 stations at the earth's surface:

0 km along strike, 0 km depth, and \pm 1.0, \pm 2.0, \pm 3.0 km perpendicular-distance from the fault trace \pm 12 km along strike, 0 km depth, and \pm 3.0 perpendicular-distance from the fault trace

6 deeper stations:

0 km along strike, 0.3 km depth, and +/-0.5 and +/-1.0 horizontal perpendicular-distance from the fault plane +12 km along strike, +12 km down-dip, and +/-3.0 km horizontal perpendicular-distance from the fault plane

TPV8

Modelers & Codes

Results submitted by 03/09/08

TPV9

Modelers & Codes

Results submitted by 03/09/08

Comparisons

The Problem,
Versions 8 and 9

The SCEC Code Validation Website*

^{*}Funding from the U.S. Dept. of Energy Extreme Ground Motion Project

The Problem, Version 8

Rupture Front Times


```
aagaard (Brad Aagaard - Finite Element - EqSim)
atienza (Victor Cruz Atienza - Finite Difference - AWM)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
liu (Yi Liu - Boundary Integral)
ma (Shuo Ma - Finite Element - MAFE)
oglesby (David Oglesby - Finite Element - DYNA3D)
pitarka (Arben Pitarka - Finite Difference - FDMSPLIT)
song (Seok Goo Song - Dynelf)
templeton (Elizabeth Templeton - Finite Element - ABAQUS)
```


Synthetic Seismograms

Off-Fault Time Series				
Name	Description	Action		
body-005st000dp003	body -0.5 km, strike 0.0 km, dip 0.3 km	Select		
body-010st000dp000	body -1.0 km, strike 0.0 km, dip 0.0 km	Select		
body-010st000dp003	body -1.0 km, strike 0.0 km, dip 0.3 km	Select		
body-020st000dp000	body -2.0 km, strike 0.0 km, dip 0.0 km	Select		
body-030st000dp000	body -3.0 km, strike 0.0 km, dip 0.0 km	Select		
body-030st120dp000	body -3.0 km, strike 12.0 km, dip 0.0 km	Select		
body-030st120dp120	body -3.0 km, strike 12.0 km, dip 12.0 km	Select		
body005st000dp003	body 0.5 km, strike 0.0 km, dip 0.3 km	Select		
body010st000dp000	body 1.0 km, strike 0.0 km, dip 0.0 km	Select		
body010st000dp003	body 1.0 km, strike 0.0 km, dip 0.3 km	Select		
body020st000dp000	body 2.0 km, strike 0.0 km, dip 0.0 km	Select		
body030st000dp000	body 3.0 km, strike 0.0 km, dip 0.0 km	Select		
body030st120dp000	body 3.0 km, strike 12.0 km, dip 0.0 km	Select		
body030st120dp120	body 3.0 km, strike 12.0 km, dip 12.0 km	Select		

Rupture Dynamics Code Validation

On-Fault Station Locations for The Problem, Versions 8 and 9

- 3 Stations on the Earth's surface are at :
 - 0, +4.5 km, +12.0 km along-strike distance, and 0 km down-dip distance
- 5 Deeper Stations are at:
 - 0 km along-strike distance, and +4.5 km, +7.5 km, +12.0 km down-dip distance
 - 4.5 km along-strike distance, and 7.5 km down-dip distance
 - 12 km along-strike distance, and 7.5 km down-dip distance

File: faultst120dp000 (strike 12.0 km, dip 0.0 km)

Field: h-slip-rate (horizontal slip rate)

Horizontal Slip rate (m/s)

surface station 12 km from hypocenter

2 hz lowpass filter applied


```
aagaard (Brad Aagaard - Finite Element - EqSim)
atienza (Victor Cruz Atienza - Finite Difference - AWM)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
liu (Yi Liu - Boundary Integral)
ma (Shuo Ma - Finite Element - MAFE)
oglesby (David Oglesby - Finite Element - DYNA3D)
pitarka (Arben Pitarka - Finite Difference - FDMSPLIT)
song (Seok Goo Song - Dynelf)
templeton (Elizabeth Templeton - Finite Element - ABAQUS)
```


The Problem, Version 9

Rupture Front Times

TPV9
Rupture
Front
Contours
0.5 sec
Intervals
from
10
modelers


```
aagaard (Brad Aagaard - Finite Element - EqSim)
atienza (Victor Cruz Atienza - Finite Difference - AWM)
barall (Michael Barall - Finite Element - FaultMod)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
roten (Daniel Roten - Finite Difference - AWM)
song (Seok Goo Song - Dynelf)
```


Synthetic Seismograms

Off-Fault Time Series				
Name	Description	Action		
body-005st000dp003	body -0.5 km, strike 0.0 km, dip 0.3 km	Select		
body-010st000dp000	body -1.0 km, strike 0.0 km, dip 0.0 km	Select		
body-010st000dp003	body -1.0 km, strike 0.0 km, dip 0.3 km	Select		
body-020st000dp000	body -2.0 km, strike 0.0 km, dip 0.0 km	Select		
body-030st000dp000	body -3.0 km, strike 0.0 km, dip 0.0 km	Select		
body-030st120dp000	body -3.0 km, strike 12.0 km, dip 0.0 km	Select		
body-030st120dp120	body -3.0 km, strike 12.0 km, dip 12.0 km	Select		
body005st000dp003	body 0.5 km, strike 0.0 km, dip 0.3 km	Select		
body010st000dp000	body 1.0 km, strike 0.0 km, dip 0.0 km	Select		
body010st000dp003	body 1.0 km, strike 0.0 km, dip 0.3 km	Select		
body020st000dp000	body 2.0 km, strike 0.0 km, dip 0.0 km	Select		
body030st000dp000	body 3.0 km, strike 0.0 km, dip 0.0 km	Select		
body030st120dp000	body 3.0 km, strike 12.0 km, dip 0.0 km	Select		
body030st120dp120	body 3.0 km, strike 12.0 km, dip 12.0 km	Select		

Rupture Dynamics Code Validation

On-Fault Station Locations for The Problem, Versions 8 and 9

- 3 Stations on the Earth's surface are at :
 - 0, +4.5 km, +12.0 km along-strike distance, and 0 km down-dip distance
- 5 Deeper Stations are at:
 - 0 km along-strike distance, and +4.5 km, +7.5 km, +12.0 km down-dip distance
 - 4.5 km along-strike distance, and 7.5 km down-dip distance
 - 12 km along-strike distance, and 7.5 km down-dip distance

File: faultst120dp000 (strike 12.0 km, dip 0.0 km)

Field: v-slip-rate (vertical slip rate)

Back to Field List	L	ogout	
<<	Page 1 of 1	>	>>

Vertical Slip rate (m/s)

surface station 12 km from hypocenter

2 hz lowpass filter applied


```
aagaard (Brad Aagaard - Finite Element - EqSim)
barall (Michael Barall - Finite Element - FaultMod)
dalguer (Luis Dalguer - Finite Difference - DFM)
duan (Benchun Duan - Finite Element - EQdyna)
kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D)
kase (Yuko Kase - Finite Difference)
ma (Shuo Ma - Finite Element - MAFE)
oglesby (David Oglesby - Finite Element - DYNA3D)
roten (Daniel Roten - Finite Difference - AWM)
song (Seok Goo Song - Dynelf)
```


Scintillating Discussion

Upcoming Benchmarks

Dipping faults YM fault

SCEC 3D Rupture Dynamics Code Validation Workshop

Monday, March 10, 2008 Kellogg West Conference Center, Pomona, CA Valley Vista Room

Convener: Ruth Harris

10:30-10:45	Introduction	Ruth Harris
10:45-11:15	New Code – FaultMod	Michael Barall
11:15-12:15	Rate-State Benchmarks: Description, Results & Discussion	Eric Dunham
12:15-1:15	Lunch	
1:15-2:00	Slip-Weakening Benchmarks: Description, Results & Discussion	Ruth Harris
2:00-2:30	Benchmark Boundary Assumptions: Implications for Results	Brad Aagaard
2:30-3:00	Numerical Convergence: Implications for Results	Yoshi Kaneko
3:00-3:30	Break	
3:30-5:00	General Discussion	AII
5:00	Adjourn	