Summary Of A Large Scale Validation Project Using The SCEC Broadband Ground Motion Simulation Platform

Christine Goulet

Validation Group: N. Abrahamson, P. Somerville, F. Silva, P. Maechling, R. Archuleta, J. Anderson, K. Assatourians, G. Atkinson, J. Bayless, J. Crempien, C. Di Alessandro, R. Graves, T. Hyun, K. Olsen, R. Takedatsu, F. Wang, K. Wooddell, R. Kamai, D. Dreger, G. Beroza, S. Day, T. Jordan, P. Spudich, J. Stewart and their collaborators...

SRL Special Focus on BBP Validation

- Published Jan. 2015
 - Built on work from SWUS and NGA-East
 - Nine papers
 - Intro
 - BBP software and implementation
 - Validation exercise design
 - Evaluation of results
 - Updated methodologies:
 - EXSIM
 - Graves and Pitarka (GP)
 - SDSU
 - UCSB
 - Composite Source Model (CSM)

What is the validation objective?

Proof that the method works!

- Past work showed that some methods could reproduce past events very closely
- Such validations may require a lot of "tuning" and sometimes used inverted sources (circularity)
- These are useful, but not sufficient in building confidence in the models
- Proof that the method will work again in the future!
 - Could the model could be used for events that haven't occurred yet?
 - We want to validate for "forward simulations"...

Users and objectives

Validation driven by need of seismic hazard projects to supplement recorded datasets

- South-Western U.S. utilities (SWUS)
- PEER NGA-East project (new CENA hazard model)
- PEER NGA-West projects

<u>Quantitative</u> validation for <u>forward simulations</u> in engineering problems

- Short term goal: supplement recorded data for development of ground motion models (GMMs=GMPEs) and hazard analyses
- Long term goal: develop acceptance of simulations for engineering design

Key focus: 5% damped elastic "average" PSA (*f*=0.1-100 Hz)

Other metrics being explored now... duration, frequency content, etc.

Key lessons learned – past validations

Need more transparency, repeatability, independence from the modeler.

- Need to validate against many events, aggregate results
- Need clear documentation of fixed and optimized parameters from modelers for each region
- Need source description that is *consistent* between methods, or that can be adapted with rules
- Use unique crustal structure (V, Q) for all models
- Consider multiple kinematic source realizations with fixed (Part A) and randomized (Part B) hypocenter location
- Handle site response outside of the simulations (correct data to reference Vs empirical site factors)
- Make all validation metrics computation and plots in uniform units/format – implement post-processing pipeline on BBP
- Need to tie-in to specific code version
- Have an independent operator run the code

Key elements for (empirical) ground-motion model (GMM) development

- Times series and frequency content (FAS) are "reasonable"
 - Visual inspection

PSA evaluation – using 50 source realizations

- PART A: validation against recorded events
 - Evaluation of bias [ln(data)/ln(model)] using various approaches
 - Check that attenuation rate is consistent with observations
 - 13 events completed, ~40 stations/event
- PART B: validation against existing GMMs in ranges where they are well constrained by data
 - PSA fits current state of knowledge in a broad sense, within a wide acceptance range

Simulation Methods and Modelers

Method Name(s)	Method type – Finite fault models	Contact(s) and Institution
Composite Source Model (CSM)	Broadband deterministic	J. Anderson (UNR)
UCSB		R. Archuleta, J. Crempien (UCSB)
EXSIM	Stochastic Brune spectrum	K. Assatourians, G. Atkinson (UWO)
Graves and Pitarka	Hybrid: deterministic LF and	R. Graves (USGS)
SDSU (BB Toolbox)	stochastic HF	K. Olsen (SDSU)

Part A (comparison with recordings)

Selection of events and stations

Region	Event Name	Year	Mw	# Records < 200 km
WUS	Loma Prieta	1989	6.94	59
WUS	Northridge	1994	6.73	124
WUS	Landers	1992	7.22	69
WUS	Whittier Narrows	1987	5.89	95
WUS	North Palm Springs	1986	6.12	32
JAPAN	Tottori	2000	6.59	171
JAPAN	Niigata	2004	6.65	246
WUS	Alum Rock	2007	5.45	40
WUS	Chino Hills	2008	5.39	40
CENA	Saguenay	1988	5.81	11
CENA	Riviere-du-Loup	2005	4.60	21
CENA	Mineral, VA	2011	5.68	10
WUS	El Mayor Cucapah	2010	7.20	134
WUS	Hector Mine	1999	7.13	103
WUS	Big Bear	1992	6.46	42
WUS	Parkfield	2004	6.50	78
WUS	Coalinga	1983	6.36	27
WUS	San Simeon	2003	6.50	21
JAPAN	Chuetsu-Oki	2007	6.80	286
JAPAN	Iwate	2008	6.90	186
TURKEY	Kocaeli	1999	7.51	14
TAIWAN	Chi-Chi	1999	7.62	257
ITALY	L' Aquila	2009	6.30	40
NEW ZEALAND	Christchurch	2011	6.20	26
NEW ZEALAND	Darfield	2010	7.00	24

- Large dataset (25 EQs)
- Many regions & tectonic environments
- Span wide magnitude range (Mw 4.6 to 7.62)
- Variety of mechanisms
- Well-recorded (16 EQs with> 40 records within 200 km)
- Select large subset of stations (~40) that are consistent with mean and standard deviation PSa of the full dataset.

 Qualitative evaluation of velocity time series and Husid plot based on Arias intensity

PSa for station 2001-SCE, NR vs 10000034

- Bias as goodness-of-fit measure for PSA and PGA
 - Average GOF with T for all stations within an event

GOF Comparison between LOMAP and simulation 10000021 $$\rm R<85\ km$

- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)

GOF Comparison for WHITTIER 50 Realizations CSM Method

- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)
 - Average GOF with distance (all realizations)

GOF Comparison for NR 50 Realizations EXSIM Method

- 1.5 1.2 1.5 Period = 0.010 sPeriod = 0.050 s1.2 0.9 0.9 35.0 35.0° 0.6 0.6 oč 0.3 0.3 34.5° 34.5° 0.0 0.0 -0.3 -0.3 34.0° -0.6 34.0° -0.6-0.9-0.9-1.2 -1.2 1.5 1.2 0.9 1.5Period = 0.100 sPeriod = 0.200 s1.2 0.9 35.0° 35.0° 0.6 0.6 0.3 0.3 34.5° 34.5° 0.0 0.0 -0.3-0.3-0.6 34.0° 34.0° -0.6-0.9-0.9 -1.2 -1.5 -1.2-1.51.5 1.5 Period = 0.500 sPeriod = 1.000 s 1.2 0.9 1.2 0.9 35.0° 35.0° 0.6 0.6 0.3 0.3 34.5° 34.5° 0.0 0.0 -0.3-0.334.0° -0.6 34 0° -0.6-0.9 -0.9 -1.2 -1.5 -1.2 1.5 1.2 1.5 1.2 Period = 2.000 sPeriod = 5.000 s0.9 0.9 35.0° 35.0° 0.6 0.6 0.3 0.3 34.5° 34 50 0.0 0.0 -0.3-0.334.0° -0.6 34.0° -0.6 -0.9-0.9-1.2 -1.2 120.00 1185 -1.5-1.5170
- Goodness-of-fit measures for PSa and PGA
 - Average GOF with T for all stations within an event
 - Average GOF for all realizations (all stations)
 - Average GOF with distance (all realizations)
 - Map of GOF (all realizations)

Comparison between GMPEs and LOMAP Number of stations: 40

Evaluation products

- GOF plots also developed for
 - NGA-West1 (2008) GMPEs
 - SMSIM

Allows to see trends/event terms

Evaluation – Part A

- 1. Comparison of PSA GOF for each event
 - Mean bias
 - Mean absolute bias
 - Failure threshold is ln(2)=0.69
 - Thresholds of 0.5 and 0.35 were considered as passing criteria
- Combined metric: mean and mean absolute bias
 - Used alone
 - Used with GMPEs

- 3. Evaluation of attenuation bias
 - Distance dependence slope of zero within 95% confidence interval

Par	A, GOF Validation Threshhold = (0.50
	Unacceptable Threshhold = (0.70

 $(-0.50 \le highlighted green values \le 0.50)$ (highlighted red values < -0.70 or > 0.70)

			PSA Period Range = [0.01-0.1] s								
	Event (Mw, Mech.)	UCSB		EXS	м	G8	P	SDS	SU	GM	PE
	Chino Hills (5.39, ROBL)										
	Alum Rock (5.45, SS)			-1.04	1.04	-0.94	0.94	-0.65	0.65	-1.33	1.33
	Whittier Narrows (5.89, REV)										
	North Palm Springs (6.12, ROBL)	0.19	0.30	0.38	0.38	0.11	0.14	0.36	0.36	0.16	0.16
	Tottori (6.59, SS)	-0.18	0.21	-1.18	1.18	0.10	0.16	-3.52	3.52	0.23	0.23
F	Niigata (6.65, REV)										
5] kn	Northridge (6.73, REV)										
ė	Loma Prieta (6.94, ROBL)	0.16	0.38	0.19	0.38	0.05	0.31	0.19	0.33	-0.12	0.38
ün	Landers (7.22, SS)	1.16	1.16	0.73	0.73	0.91	0.91	0.92	0.92	1.05	1.05
æ	Riviere-du-Loup (4.6 REV)										
	Mineral (5.68 REV)										
	Saguenay (5.81 REV)										
	Average CA	0.37	0.52	0.11	0.55	0.04	0.49	0.20	0.48	-0.08	0.61
	Average CENA										
	Average ALL	0.28	0.47	-0.08	0.64	0.05	0.44	-0.33	0.92	-0.04	0.56

		0.01 to 0.1 s	0.1 to 1 s	1 to 3 s	More than3 s	
		10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	bed by the law of the sta	Art and diamond in the state		
	Event (May Mach)	PSA Period Range = [0.01-0.1] s	PSA Period Kange = j0.1-1j s	PSA Period Range = [1-5] 5	PSA Period Range > 35	
	Chine Hills (5.39, ROBI)	UCSE CASIM USP 3030 UNPE	USB EXIM USP 3030 UMPE	UCSD EXSIM USP 3030 UMPE	USB EASIM GEF 3030 GMPE	
	Alum Rock (5.45, SS)	-1.04: 1.04 -0.94: 0.94 -0.65: 0.65 -1.33: 1.33	-1.15 1.15 -1.11 1.11 -0.78 0.78 -1.33 1.33	-1.15 1.15 -1.32 1.32 -1.32 1.32 -1.77 1.77	-0.96 0.96 -1.11 1.11 -1.05 1.05 -1.66 1.66	
	Whittier Narrows (5.89, REV)					
	North Palm Springs (6.12, ROBL)	0.19 0.30 0.38 0.38 0.11 0.14 0.35 0.36 0.16 0.16	0.96 0.96 0.15 0.31 0.02 0.20 0.22 0.32 0.07 0.24	0.93 0.93 0.20 0.20 0.45 0.48 0.51 0.51 0.08 0.22	0.41 0.41 -0.08 0.08 -0.94 0.94 -0.95 0.95 -0.50 0.50	
	Tottori (6.59, SS)	-0.18 0.21 -1.18 1.18 0.10 0.16 -3.52 3.52 0.23 0.23	1.08 1.08 -0.19 0.63 0.58 0.60 -2.13 2.13 0.62 0.62	1.25 1.25 -0.17 0.21 -0.07 0.21 -2.41 2.41 -0.03 0.18	1.11 1.11 0.23 0.23 0.30 0.30 1.91 1.91 0.41 0.41	
	Nilgata (6.65, REV)					
3	Northridge (6.73, KEV)	0.16 0.38 0.19 0.38 0.05 0.31 0.19 0.33 0.17 0.38	058 058 020 037 035 035 029 037 000 041	0.65 0.87 0.48 0.97 0.08 0.52 0.12 0.53 0.32 0.85	0.27: 0.59 0.09: 0.58 .0.39: 0.39 .0.39 .0.39 .0.18: 0.43	
<u> </u>	Landers (7.22, SS)	1.16 1.16 0.73 0.73 0.91 0.91 0.92 0.92 1.05 1.05	1.58 1.58 0.28 0.28 0.55 0.55 0.45 0.45 0.69 0.69	2.04 2.04 0.61 0.61 0.58 0.58 0.53 0.53 0.94 0.94	2.25 2.25 1.13 1.13 0.45 0.45 0.44 0.44 1.17 1.17	
Q	Niviere-du-Loup (4.6 REV)					
Ä	Mineral (5.68 REV)					
0	Saguenay (5.81 REV)					
	Average CA	0.37 0.52 0.11 0.55 0.04 0.49 0.20 0.48 -0.08 0.61	0.86 0.86 -0.02 0.47 -0.01 0.49 0.13 0.44 -0.10 0.58	0.98 1.12 0.18 0.81 -0.24 0.66 -0.28 0.66 0.01 0.91	1.07 1.24 0.26 0.81 -0.25 0.55 -0.24 0.54 0.01 0.88	
	Average CENA			107 114 017 077 077 010 015 001 000 001	100 111 016 020 026 020 016 020 007 020	
	Average ALL	0.28: 0.47 -0.08: 0.84 0.03: 0.44 -0.35: 0.32 -0.04: 0.30	0.82 0.90 0.04 0.90 0.07 0.90 0.20 0.65 0.02 0.56	1.03. 1.14 0.13. 0.73 0.22. 0.33 0.30. 0.34 0.00. 0.84	1.08: 1.21 0.16: 0.70 0.28: 0.30 0.36: 0.80 0.07: 0.75	
	China Hills (5,39, ROBL)	0.21 0.32 -0.01 0.33 0.17 0.28 -0.40 0.50	0.33 0.44 0.20 0.42 0.29 0.38 -0.14 0.38	0.64 0.64 0.73 0.73 0.65 0.65 0.03 0.27	0.80 0.80 0.80 0.80 0.84 0.84 0.22 0.32	
	Whittier Narrows (5.89, REV)	-0.17 0.63 0.23 0.32 -0.30 0.41 -0.28 0.43 -0.18 0.41	0.72 0.80 0.23 0.40 0.15 0.39 0.16 0.40 0.01 0.40	0.41 0.51 -0.14 0.28 -0.45 0.49 -0.54 0.55 -0.41 0.47	-0.14: 0.27 -0.35: 0.38 -1.02: 1.02 -1.01: 1.01 -0.81: 0.81	
	North Palm Springs (6.12, ROBL)	-0.41 0.55 0.08 0.38 -0.20 0.42 -0.11 0.33 -0.15 0.34	0.57 0.70 -0.13 0.40 -0.24 0.41 -0.17 0.41 -0.19 0.37	0.59 0.70 -0.08 0.44 -0.23 0.60 -0.30 0.65 -0.21 0.57	0.25 0.37 0.02 0.56 0.05 0.24 0.05 0.24 0.21 0.69	
_	Tottori (6.59, SS)	-0.34 0.43 -0.46 0.47 0.32 0.39 -1.15 1.16 0.59 0.61	0.35 0.52 -0.03 0.38 0.31 0.48 -0.51 0.74 0.55 0.64	0.37: 0.57 0.02 0.39 0.06 0.48 -0.84 1.08 0.09 0.35	0.44 0.64 0.32 0.41 0.05 0.44 -0.30 0.65 0.09 0.34	
8	Niigata (6.65, REV)	-0.27 0.59 0.16 0.52 0.28 0.44 -1.76 1.76 0.40 0.55	0.61 0.62 0.29 0.49 0.19 0.45 1.03 1.17 0.33 0.51	0.07 0.28 -0.16 0.52 -0.48 0.78 -1.69 1.69 -0.30 0.63	-0.24 0.28 -0.22 0.46 -0.54 0.67 -1.27 1.27 -0.53 0.69	
\mathbf{x}	Northridge (6.73, REV)	0.49 0.62 0.23 0.38 0.06 0.34 -0.06 0.37 -0.01 0.40	0.77 0.82 0.30 0.45 0.21 0.43 0.16 0.42 0.18 0.46	0.38 0.70 0.23 0.54 -0.09 0.35 -0.14 0.35 0.18 0.54	0.15 0.59 0.30 0.42 -0.10 0.32 -0.10 0.32 0.14 0.43	
0	Loma Prieta (6.94, ROBL)	0.11 0.28 0.33 0.40 0.07 0.33 0.18 0.35 0.10 0.38	0.43: 0.51 0.22 0.39 0.04 0.37 0.20 0.39 0.15 0.39	0.25 0.57 -0.12 0.36 -0.29 0.40 -0.32 0.40 -0.10 0.29	0.38 0.54 0.19 0.47 -0.25 0.28 -0.25 0.28 0.05 0.40	
Ņ	Biviere-du-Loup (4.6.REV)	-0.40 0.38 0.29 0.57 -0.38 0.52 -0.29 0.66 -0.16 0.49	0.12 1.04 0.20 1.13 0.32 1.17 0.10 1.00	0.52 0.53 0.40 0.45 0.51 0.51 0.56 0.51 0.08 0.36	114 114 112 112 126 136 0.87 0.87	
ц,	Mineral (5.68 REV)	-0.74 0.74 -0.46 0.46 -0.43 0.43 -0.55 0.55 0.71 0.71	0.60 0.72 -0.17 0.23 -0.04 0.49 -0.58 0.58 0.34 0.37	0.92 0.92 0.20 0.20 0.04 0.06 -0.20 0.20 0.32 0.32	0.57: 0.57 0.28: 0.28 -0.03: 0.03 -0.22: 0.22 0.19: 0.19	
	Saguenay (5.81 REV)					
	Average CA	0.06: 0.55 0.15: 0.37 -0.13: 0.39 -0.06: 0.37 -0.13: 0.41	0.63 0.72 0.15 0.42 -0.02 0.42 0.05 0.41 0.03 0.42	0.38 0.62 0.08 0.45 -0.16 0.48 -0.21 0.48 -0.07 0.44	0.24 0.53 0.31 0.56 -0.08 0.51 -0.07 0.51 0.04 0.48	
	Average CENA	-0,74 0.74 -0.57 0.57 -0.20 0,40 -0.05 0,47 0.60 0.65	0.60 0.72 0.03 0.77 0.12 0.92 0.02 0.97 0.05 0.83	0.92 0.92 0.47 0.70 0.44 0.64 0.30 0.71 0.11 0.64	0.57 0.57 0.93 0.93 0.83 0.85 0.88 0.99 0.70 0.70	
	Average ALL	-0.02: 0.54 0.06: 0.40 -0.06: 0.39 -0.27: 0.53 0.00: 0.45	0.60 0.69 0.14 0.43 0.03 0.44 -0.07 0.51 0.10 0.46	0.36: 0.59 0.07 0.46 -0.14 0.51 -0.37 0.64 -0.06 0.46	0.21: 0.51 0.25: 0.52 -0.10: 0.52 -0.26: 0.66 -0.01: 0.49	
	Chino Hills (5.39, ROBL)	9.26 0.52 -0.04 0.47 0.01 0.47 -0.39 0.60	0.15 0.50 -0.05 0.51 -0.02 0.50 -0.27 0.56	0.36 0.55 0.19 0.50 0.10 0.47 -0.08 0.40	0.61 0.67 0.57 0.64 0.55 0.63 0.15 0.41	
	Alum Rock (5.45, SS)	-0.73: 0.80 -1.03: 1.04 -0.72: 0.80 -0.99 1.02	-0.77 0.83 -1.02 1.04 -0.70 0.79 -0.81 0.86	-0.58 0.67 -0.79 0.84 -0.81 0.86 -0.87 0.88	0.03 0.41 -0.54 0.58 -0.55 0.58 -0.38 0.46	
	Whittier Narrows (5.89, REV)	0.33 0.52 0.31 0.49 -0.12 0.39 -0.27 0.43 -0.18 0.43	0.99 1.00 0.20 0.50 -0.09 0.46 -0.25 0.51 -0.06 0.48	0.78: 0.79 -0.22: 0.37 -0.37: 0.56 -0.51: 0.61 -0.48: 0.55	0.37 0.37 0.06 0.22 -0.46 0.46 -0.49 0.49 -0.30 0.31	
	Tottori (6.59, SS)	0.01 0.40 0.21 0.41 0.76 0.79 0.11 0.46 1.07 1.08	-0.11 0.58 -0.13 0.54 -0.02 0.63 -0.14 0.68 0.33 0.72	-0.28: 0.48 -0.41: 0.58 -0.59: 0.67 -0.80: 0.84 -0.41: 0.56	0.24: 0.45 -0.01: 0.38 -0.44: 0.57 -0.47: 0.59 -0.27: 0.45	
_	Niigata (6.65, REV)	-0.20 0.51 0.16 0.46 0.24 0.52 -0.02 0.43 0.36 0.59	0.18 0.60 -0.02 0.55 -0.20 0.66 -0.13 0.58 0.02 0.63	-0.41 0.62 -0.43 0.61 -0.93 1.05 -0.97 1.08 -0.60 0.73	-0.90: 0.94 -0.31: 0.49 -1.09: 1.13 -1.09: 1.13 -0.70 0.74	
<u> </u>	Northridge (6.73, REV)	-0.50 0.56 -0.10 0.30 -0.26 0.34 -0.54 0.55 -0.28 0.35	-0.16 0.36 -0.17 0.39 -0.27 0.41 -0.37 0.46 -0.14 0.34	-0.20 0.38 -0.55 0.58 -0.18 0.52 -0.22 0.53 -0.34 0.41	-0.36 0.49 -0.26 0.43 -0.33 0.80 -0.33 0.80 -0.18 0.35	
\mathbf{x}	Loma Prieta (6.94, ROBL)	0.54 0.64 0.11 0.39 0.46 0.53 0.33 0.43 0.26 0.42	0.04 0.46 -0.10 0.43 -0.35 0.50 -0.18 0.42 -0.04 0.43	0.03 0.43 -0.22 0.51 -0.43 0.56 -0.45 0.57 0.02 0.46	0.43 0.54 0.30 0.48 -0.18 0.36 -0.18 0.36 0.43 0.53	
0	Landers (7.22, SS)	-0.87 1.00 -0.17 0.27 -0.34 0.38 -0.27 0.35 -0.18 0.35	0.09 0.67 -0.31 0.43 -0.32 0.44 -0.27 0.44 -0.11 0.42	-0.19 0.69 -0.64 0.70 -0.52 0.63 -0.55 0.64 -0.35 0.56	0.08 0.56 -0.29 0.53 -0.73 0.75 -0.73 0.75 -0.19 0.57	
N-	Riviere-du-Loup (4.6 REV)	0.22 0.50 0.20 0.53 0.33 0.54 0.94 0.98	0.40: 0.66 0.02: 0.55 0.14: 0.60 -0.08: 0.77	0.37 0.53 -0.04 0.60 0.01 0.61 -0.70 0.93	0.24 0.32 -0.23 0.29 -0.13 0.23 -0.71 0.72	
Ġ	Saguenav (5.81 REV)	1.73 1.73 0.57 0.58 1.03 1.04 0.74 0.74 1.61 1.61	128 128 0.52 0.50 0.16 0.26 0.77 0.78 0.19 0.51	0.29 0.29 -146 146 -1.06 1.06 -1.60 1.60 -1.46 1.46	0.45 0.45 1.35 0.02 0.08 40.05 0.10 0.85 0.85	
Ň	Average CA	-0.23 0.65 0.03 0.50 -0.26 0.53 -0.25 0.50 -0.27 0.52	0.37 0.71 -0.11 0.52 -0.29 0.55 -0.26 0.52 -0.19 0.52	0.15 0.60 -0.30 0.57 -0.32 0.58 -0.38 0.59 -0.33 0.54	0.12 0.53 0.02 0.51 -0.35 0.62 -0.35 0.62 -0.01 0.49	
	Average CENA	0.77 1.01 0.31 0.53 0.31 0.57 0.34 0.53 1.07 1.10	0.78 0.95 0.25 0.65 -0.04 0.53 -0.10 0.67 -0.08 0.73	0.79 0.93 0.39 0.66 0.03 0.64 0.00 0.67 -0.57 0.98	0.43 0.43 0.37 0.44 -0.20 0.26 -0.13 0.21 -0.55 0.72	
	Average ALL	-0.18 0.61 0.08 0.49 -0.08 0.55 -0.15 0.50 0.01 0.63	0.31 0.69 -0.07 0.53 -0.24 0.56 -0.22 0.55 -0.12 0.56	0.01 0.59 -0.28 0.58 -0.39 0.65 -0.46 0.68 -0.39 0.59	0.25 0.63 -0.05 0.47 -0.54 0.72 -0.54 0.72 -0.25 0.55	
	Chino Hilis (5.39, ROBL)	0.46 0.61 0.44 0.58 0.31 0.55 -0.13 0.52	0.27 0.59 0.34 0.58 0.31 0.60 -0.03 0.59	0.20 0.67 0.24 0.75 0.19 0.73 -0.01 0.62	0.47 0.83 0.59 0.91 0.58 0.91 0.23 0.72	
	Alum Rock (5.45, SS)	-0.72 0.86 -0.77 0.86 -0.54 0.80 -0.98 1.06	-0.83 0.95 -0.83 0.93 -0.48 0.77 -0.82 0.96	-0.17 0.37 -0.82 0.84 -0.85 0.86 -0.28 0.44	0.09 0.22 -0.86 0.86 -0.86 0.86 -0.10 0.32	
	Whittier Narrows (5.89, REV)	034 037 008 039 000 037 030 037 CT				
	Tottori (6.59, 55)	-0.44 0.54 0.48 0.60 0.69 0.74 0.78 0.48 0.50 0.69	0.22 0.52 0.52 0.52 0.50 0.41 0.46 0.50 0.37 0.48	-0.05: 0.57 0.34: 0.70 0.30 0.69 0.33: 0.70 0.33: 0.60	0.01 0.53 0.74 0.87 0.31 0.58 0.31 0.58 0.04 0.55	
C	Niigata (6.65, REV)	0.08: 0.61 0.05: 0.56 -0.12: 0.57 0.13: 0.61 -0.28: 0.70	-0.07: 0.67 -0.27: 0.61 -0.71: 0.87 0.01: 0.63 -0.71: 0.90	-0.61 0.79 -0.39 0.65 -1.32 1.34 -1.33 1.36 -1.03 1.07	-1.34 1.35 -0.14 0.52 -1.49 1.50 -1.49 1.50 -0.89 0.94	
\mathbf{r}	Northridge (6.73, REV)	-0.27 0.32 0.16 0.39 0.15 0.46 -0.05 0.28 0.04 0.31	0.18 0.43 0.16 0.48 0.22 0.57 0.19 0.49 0.28 0.51	-0.13 0.41 -0.83 0.88 -0.31 0.55 -0.32 0.56 -0.47 0.64	0.03 0.03 0.56 0.56 -0.31 0.31 -0.31 0.31 -0.15 0.20	
-	Loma Prieta (6.94, ROBL)	0.12 0.36 0.61 0.61 0.40 0.42 0.54 0.54 0.45 0.45	0.60 0.65 0.62 0.65 0.55 0.60 0.74 0.77 0.72 0.74	0.82 1.05 0.76 0.99 0.54 0.94 0.51 0.92 1.14 1.24	0.49 0.83 0.30 0.68 0.03 0.62 0.03 0.62 0.71 0.86	
č	Landers (7.22, SS)	0.03 0.32 0.01 0.15 0.02 0.17 -0.08 0.21 0.14 0.23	0.37 0.52 -0.28 0.37 -0.10 0.30 -0.14 0.35 0.08 0.36	0.61 0.77 -0.28 0.45 0.06 0.40 0.03 0.39 0.31 0.59	0.94: 0.98 0.13: 0.53 0.03: 0.47 0.03: 0.47 0.72: 0.83	
й	Niviere-du-Loup (4.6 REV)	0.42: 0.48 0.41: 0.47 -0.46: 0.53 1.51: 1.51	0.54 0.83 0.30 0.71 -0.34 0.71 0.61 1.15		0.97: 0.97 0.69: 0.69 0.32: 0.32 0.13: 0.18	
4	Saguenay (5.81 REV)	2.56 2.56 0.42 0.55 1.04 1.05 0.08 0.39 1.68 1.68	3.57 3.57 0.73 0.80 1.43 1.43 0.04 0.46 1.47 1.47	2.91 2.91 0.44 0.60 1.63 1.63 0.15 0.43 0.65 0.69	0.66 0.66 -0.12 0.12 0.37 0.37 -0.42 0.42 0.25 0.77	
ž	Average CA	0.00 0.32 0.04 0.50 0.00 0.48 -0.01 0.48 -0.17 0.53	0.41 0.54 -0.13 0.60 -0.06 0.57 0.01 0.57 -0.08 0.61	0.60 0.80 -0.03 0.58 -0.02 0.66 -0.06 0.65 0.14 0.64	0.89: 0.96 0.22: 0.56 0.00: 0.69 0.00: 0.69 0.39: 0.69	
-	Average CENA	1.66 1.75 0.26 0.55 0.45 0.78 -0.23 0.42 1.49 1.54	2.61 2.62 0.47 0.72 0.72 0.98 0.04 0.53 1.10 1.26	2.13 2.13 0.48 0.71 1.05 1.19 0.38 0.69 0.45 0.75	0.48 0.48 0.97 0.99 0.24 0.29 0.13 0.31 0.63 0.73	
	Average ALL	0.27 0.73 0.15 0.53 0.17 0.59 0.01 0.49 0.25 0.78	0.63 1.00 0.05 0.63 0.03 0.70 0.07 0.58 0.09 0.78	0.42 0.97 0.04 0.63 -0.13 0.86 -0.26 0.79 -0.10 0.74	0.26 0.90 0.33 0.68 -0.51 0.87 -0.52 0.87 -0.09 0.74	
	Reverse (REV)	0.22: 0.71 0.17: 0.46 0.05: 0.49 -0.18: 0.51 0.27: 0.69	0.70 0.34 0.13 0.54 0.03 0.60 0.14 0.56 0.07 0.66	0.24 0.78 -0.12 0.57 -0.31 0.79 -0.48 0.79 -0.35 0.69	-0.55 0.87 -0.02 0.53 -0.80 0.95 -0.86 1.00 -0.46 0.72	
	Reverse-Oblique (ROBL)	-0.11 0.49 0.29 0.50 0.05 0.47 0.10 0.45 -0.08 0.48	0.47 0.66 0.12 0.49 0.00 0.49 0.07 0.49 -0.02 0.50	0.41 0.66 0.10 0.57 0.00 0.57 -0.05 0.56 0.01 0.51	0.37 0.53 0.40 0.61 0.16 0.54 0.16 0.54 0.22 0.51	
	Strike-Slip (SS)	-0.34 0.59 -0.19 0.51 -0.13 0.63 -0.29 0.57 -0.05 0.70	0.07 0.59 -0.28 0.58 -0.29 0.63 -0.24 0.61 -0.13 0.63	0.09 0.65 -0.26 0.58 -0.42 0.65 -0.55 0.74 -0.29 0.61	0.19 0.62 0.17 0.56 -0.39 0.61 -0.45 0.65 -0.04 0.56	
	Normal (NM)					
	Average CA	-0.11 0 57 0.06 0.47 -0.17 0.49 -0.15 0.47 -0.22 0.50	0.46 0.69 -0.05 0.51 -0.17 0.52 -0.13 0.50 -0.12 0.51	0.32 0.65 -0.14 0.55 -0.21 0.58 -0.26 0.58 -0.16 0.55	0.32 0.63 0.15 0.54 -0.20 0.60 -0.20 0.60 0.10 0.55	
	Average CENA	1.38 1.56 0.22 0.54 0.34 0.66 0.02 0.47 1.25 10	101 1 11 014 017 619 017 606 DF2 052 600	0.60 0.92 0.22 0.69 0.02 0.83	0.48 0.48 0.75 0.79 0.13 0.33 0.10 0.33 0.22 0.72	
	Average ALL	-0.02 0.63 0.09 0.49 -0.01 0.53 -0.13 0.51 0.07 0.63	U.47 0.78 0.00 G.54 -0.10 0.58 0.11 0.55 -0.02 0.60	0.23 0.71 -0.11 0.57 -0.26 0.68 -0.38 0.71 -0.23 0.61	0.13 0.71 0.15 0.56 0.43 0.72 0.48 0.76 0.14 0.61	

Combined Metric Comparison with GMPEs

$$CGOF_{Normalized} = \frac{CGOF_{sims}}{CGOF_{GMPE}}$$

Combined GOF Plot for LOMAP 50 Realizations SDSU Method

CGOF _{Normalized}	Change the values below Part A, GOF Validation Threshhold = Unacceptable Threshhold = weight=	1 ***	bined Metric Perform sected to Westential Issue	nce effinite issue	
101111200		PSA Period Range = [0.01-0.1] s	PSA Period Range = [0.1-1] s	PSA Period Range = [1-3] s	PSA Period Range > 3s
	Event (Mw, Mech.)	UCSB EXSIM GBP SDSUGMPE	UCSB EXSIM GBP SDSU GMPE	UCSB EXSIM GBP SDSU GMP	UCSB EXSIM G&P SDSU GMPE
	Chino Hills (5.39, ROBL)	20000 20000 20000 20000	2002 9202 2000 2005	2002 2002 2005 2005	22222 22222 22222 22222
	Alum Rock (5.45, SS)	0.78 0.71 0.49 1.33	0.66 0.83 0.59 1.33	0.65 0.75 0.75 1.77	0.58 0.67 0.63 1.66
	Whittier Narrows (5.89, REV)			2020 ACC 2020 2022	22222 22222 22222 22222
	North Palm Springs (6.12, ROBL) Tetteri (6.59, SS)	1.53 2.38 0.78 2.25 0.16	6.19 1.48 0.71 1.74 0.16	6.20 1.33 3.10 3.40 0.15	
	E Nigata /6 65 BEVI	0.83 3.13 0.37 53.3 0.23	1.74 0.00 0.33 3.44 0.02	11.3 5.65 1.33 13.0 0.11	
2	Northridge (6.73, REV)				2000 2000 2000 2000
–	Loma Prieta (6.94, ROBL)	1.08 1.14 0.72 1.04 0.25	2.83 1.39 1.22 1.61 0.21	1.30 1.24 0.51 0.56 0.58	1.41 1.10 1.28 1.28 0.31
<u>–</u>	- Landers (7.22, SS)	1.10 0.70 0.87 0.88 1.05	2.29 0.41 0.80 0.65 0.69	2,17 0.65 0.62 0.56 0.94	1.92 0.97 0.38 0.38 1.17
Ψ	Riviere-du-Loup (4.6 REV)	35555 25555 55555 55555 <u></u>			55555 55552 55553 55555
0	Mineral (5.58 REV)				
	Average CA	1.29 0.96 0.77 0.99 0.35	2.53 0.72 0.74 0.84 0.34	2.78 1.08 0.98 1.02 0.44	2.60 1.20 0.90 0.88 0.45
	Average CENA				505000 000000 000000 000000
	Average ALL	1.25 1.20 0.82 2.08 0.30	3.03 0.92 0.97 1.49 0.30	2.68 1.05 1.00 1.84 0.41	2.66 1.00 0.88 1.58 0.43
	Chino Hills (5.39, ROBL)	0.59 0.38 0.50 0.45	148 1.19 1.29 0.26	4.27 4.87 4.33 0.15	2.96 2.96 3.11 0.27
	Whittier Nervice (5.45, 55)	136 0.98 1.09 0.40 0.48	3 71 1 54 1 30 1 37 0 35		0.35 0.45 1.36 1.35 0.85
	North Paim Springs (6.12, ROBL)	1.96 0.94 1.27 0.90 0.25	2.27 0.95 1.16 1.04 0.28	1.65 0.67 1.05 1.22 0.39	0.69 0.64 0.32 0.32 0.45
~	Tottori (6.59, SS)	0.64 0.78 0.59 1.93 0.60	0.73 0.34 0.66 1.05 0.60	2.14 0.93 1.23 4.36 0.22	2.51 1.70 1.14 2.21 0.22
	Nigata (6.65, REV)	0.91 0.72 0.76 3.71 0.48	1.46 0.93 0.76 2.62 0.42	0.38 0.73 1.35 3.63 0.47	0.43 0.56 0.99 2.08 0.61
×	Northridge [6.73, REV]	2.71 1.49 0.98 1.05 0.21	2.48 1.17 1.00 0.91 0.32	1.50 1.07 0.61 0.68 0.36	1.30 1.26 0.74 0.74 0.29
Q	Loma Prieta (6.94, ROBL)	0.81 1.52 0.83 1.10 0.24	1.74 1.13 0.76 1.09 0.27	2.10 1.23 1.77 1.85 0.20	2.04 1.47 1.18 1.18 0.23
Ņ	Biviers da Join (4.6 REV)	2.23 1.32 1.36 1.46 0.33 2000 1.07 0.41 0.53 0.59		192 197 191 044	
ý	Mineral (5.68 REV)	1.04 0.65 0.61 0.77 0.71	1.85 0.56 0.75 1.63 0.36	2.88 0.63 0.16 0.63 0.32	3.00 1.47 0.16 1.16 0.19
	Saguenay (S.81 REV)	99992 59992 59995 89992	20005 20091 10002 20065 -	6555 55552 65555 R5555	56668 86666 86666 96668
	Average CA	1.13 0.96 0.96 0.80 0.27	3.00 1.27 0.98 1.02 0.23	0.50 0.27 0.32 0.35 0.25	1.48 1.67 1.13 1.12 0.26
	Average CENA	1.18 0.91 0.48 0.42 0.63	1.50 0.91 1.18 1.13 0.44	0.92 0.99 0.94 0.51 0.52	0.81 1.33 1.70 1.34 0.70
	And the Art	1.1.4 1.01 1.01 1.151 0.1-4	1000 0701 0707 0704 0720	steel start share share share	1.44 1.54 1.24 1.24 0.24
	Chino Hills (5.39, ROBL)	0.79 0.52 0.48 0.50	0.78 0.67 0.63 0.42	1.90 1.44 1.19 0.24	2.29 2.16 2.11 0.28
	Alum Rock (5.45, 55)	0.76 1.03 0.76 1.01	0.96 1.23 0.89 0.84	0.71 0.93 0.95 0.88	0.52 1.33 1.35 0.42
	Whittier Narrows [5.89, REV]	1.39 1.31 0.84 1.15 0.31	3.69 1.30 1.02 1.41 0.27	1.52 0.57 0.90 1.09 0.52	1.21 0.46 1.51 1.61 0.31
	North Palm Springs (6.12, ROBL) Tottool (6.59, SC)	0.83 1.46 1.07 0.98 0.42	3.09 1.07 0.88 0.88 0.29	2.10 1.09 0.58 0.70 0.41	
	E Nigata /6 65 REV	0.15 0.25 0.72 0.27 2.08	120 0.88 132 1.09 0.33	0.72 0.78 1.49 1.54 0.62	1 28 0 56 1 54 1 54 0 77
2	P Northvidee (6.73, REV)	1.68 0.63 0.95 1.73 0.32	1.08 1.17 1.42 1.73 0.24	0.77 1.51 0.93 1.00 0.38	1.60 1.30 2.13 2.13 0.27
	Loma Prieta (6.94, ROBL)	1.74 0.74 1.46 1.12 0.34	1.06 1.13 1.81 1.28 0.24	0.96 1.52 2.06 2.13 0.24	1.01 0.81 0.56 0.56 0.48
_	Landers (7.22, SS)	3.53 0.83 1.36 1.17 0.27	1.43 1.40 1.43 1.34 0.27	0.97 1.47 1.26 1.31 0.46	0.84 1.08 1.95 1.95 0.38
×	Riviere-du-Loup (4.6 REV)	0.38 0.38 0.45 0.96	1.25 0.67 0.87 0.43	0.55 0.39 0.38 0.82	0.39 0.36 0.25 0.72
<u> </u>	Mineral (5.68 REV)	0.17 0.49 0.26 0.11 1.42	1.21 0.84 1.45 2.64 0.58	1.23 1.32 0.95 0.68 0.73	0.63 1.99 0.07 0.11 0.68
0	Average CA	1.11 0.57 1.00 0.95 0.40	152 0.89 118 110 036	0.86 100 103 111 0.44	130 105 194 194 035
N	Average CENA	0.82 0.39 0.41 0.40 1.09	2.14 1.11 0.70 0.95 0.41	1.11 0.68 0.43 0.43 0.78	0.68 0.64 0.36 0.27 0.64
	Average ALL	1.23 0.89 0.98 1.02 0.32	1.47 0.88 1.18 1.13 0.34	0.61 0.88 1.06 1.16 0.49	1.10 0.65 1.58 1.58 0.40
	Chino Hills (5.39, ROBL)	1.65 1.57 1.32 0.33	303 1.39 1.48 1.47 0.31	0000 1.38 1.57 1.46 0.31	1.37 1.58 1.57 0.48
	Alum Nock (5.45, 55) With the Names IC 40, 500	0.77 0.80 0.66 1.02	1.00 0.99 0.70 0.89	0.6 131 138 0.8	0.74 4.10 4.10 0.21
	North Paim Springs (6.12, 8081)	1.04 0.61 0.35 1.01 0.25	1.22 1.07 0.84 1.13 0.43	2.36 1.30 1.06 0.84 0.35	
	Tottori (6.59, 55)	0.78 0.86 1.13 0.61 0.63	0.97 1.38 1.04 1.47 0.38	0.61 1.02 0.97 1.01 0.51	0.86 2.56 1.41 1.41 0.32
۲ ۲	Nigata (6.65, REV)	0.70 0.62 0.70 0.76 0.49	0.46 0.55 0.98 0.40 0.81	0.67 0.50 1.27 1.28 1.05	1.47 0.36 1.63 1.63 0.92
E .	S Northridge (6.73, REV)	1.68 1.57 1.74 0.94 0.18	0.77 0.81 1.00 0.86 0.40	0.49 1.54 0.77 0.79 0.56	0.17 3.20 1.77 1.77 0.18
×	Loma Prieta (6.94, ROBL)	0.53 1.36 0.91 1.20 0.45	0.86 0.87 0.79 1.03 0.73	0.79 0.74 0.62 0.60 1.19	0.84 0.62 0.41 0.41 0.79
9	E Landers (7.22, SS)	0.95 0.43 0.51 0.78 0.19	2.02 1.48 0.91 1.11 0.22	1.53 0.81 0.51 0.47 0.45	1.74 0.43 0.32 0.32 0.78
0	Kineral (5.69.001)	0.50 0.29 0.53 1.51	1.35 0.31 0.35 0.37 1.03	0.58 0.88 1.30 1.40 0.78	0.40 4.45 2.06 0.16
Ϋ́Υ.	Saguenay (5.81 REV)	1.52 0.29 0.62 0.14 1.68	2.43 0.52 0.97 0.17 1.47	4.34 0.78 2.43 0.43 0.67	2.54 0.46 1.42 1.62 0.34
Ó	Average CA	0.46 0.77 0.69 0.70 0.35	1.38 1.05 0.91 0.84 0.35	1.79 0.78 0.87 0.91 0.39	1.71 0.72 0.64 0.64 0.54
~	Average CENA	1.13 0.27 0.41 0.21 1.52	2.22 0.50 0.72 0.24 1.18	3.55 0.99 1.87 0.89 0.60	0.71 1.44 0.39 0.32 0.68
	Average ALL	0.97 0.66 0.74 0.49 0.52	1.87 0.78 0.84 0.75 0.44	1.65 0.80 1.18 1.25 0.42	1.40 1.22 1.66 1.67 0.42
	E		3 30 0.01 0.00 0.00 0.00	1000 000 100 100 000	1 20 0 47 1 40 1 50 4 50
	Reverse (REV) Reverse-Oblique (ROBL)	1.07 1.41 0.93 0.98 0.78	2.12 0.92 0.86 0.96 0.37	2.06 1.29 1.10 1.17 0.34	1.23 0.47 1.48 1.58 0.59
	Strike-Silp (SS)	1.24 0.93 1.01 1.15 0.38	0.87 1.13 1.21 1.12 0.38	0.82 0.93 1.19 1.43 0.45	1.35 1.22 1.67 1.83 0.30
	Normal (NM)				2000 2000 2000 2000
	Average CA	0.94 0.74 0.92 0.86 0.36	1.83 0.89 1.10 1.00 0.32	1.37 0.97 1.11 1.18 0.38	1.46 1.06 1.23 1.23 0.33
	Average CERA		2.66 0.68 0.74 0.45 0.76	5.12 0.81 5.13 1.07 0.43	112 0.95 1.53 1.55 0.47
	CONTRACTOR OF A		anal 0000 1.10 1.00 0.51		a.a.c. 0.00 0.00 0.00 0.00

Evaluation Part A

Attenuation Bias

Fit a line through distance binned GOF values

$$\ln\left(\frac{Sa_{obs}}{Sa_{syn}}\right) = a + b \cdot \ln(R)$$

Determine whether slope b=0 lies within 95% confidence interval

Distance Metric - All CA+JP+CENA (March 2014 v14.3)								
Period	UCSB	EXSIM	G&P	SDSU	GMPE			
0.01 to 0.1 s	0.3	0.36	0.6	7 0.61	0.53			
0.1 to 1.0 s	0.0	0.23	0.0	1 0.48	0.03			
1 to 3 s	0.1	16 0.10	0.0	5 0.33	0.11			
>3s	1.1	0.34	0.8	3 0.41	0.13			

Figure 1. Best fit line (green), and 95% confidence regions (red-dashed) for the 0.1 to 1 s period bin. GOF values from Table 3.1.2 are shown for event and distance bin. A) CSM; B) UCSB; C) EXSIM, D) G&P, E) SDSU, and F) GMPE. Y-axis is mean bias in natural log units. Values are for each distance bin plotted with respect to the natural log of the central distance of each bin. Data are weighted by the number of stations and discrete periods in each distance bin.

Part B – Design and Evaluation criteria

- Scenarios from NGA-West1&2 well constrained by data at 20 and 50 km Rrup
 - M5.5 REV
 - M6.2 SS
 - M6.6 SS & REV
- 50 realizations of the source, WITH randomized hypocenter location for each
- Simulations for two velocity models: NorCal and SoCal

Summary - Parts A and B

Summary of Simulated Events

Capturing the uncertainty

In scenario Loma Prieta (N=130) 7.05 0.4 definitions IMavgl 0.3 Leondard (2010) Hanks & Bakun (2008) M and geometry 0. 0.0 7.00 6.90 6.95 7.00 Mw 0.4 0.3 IMavgl MW 6.95 0.1 0.0 800 700 A(km*km) 6.90 0.4 0.3 IMavgl 0.1 6.85 0.0 800 0.750.800.850.90 700 900 Vr/Vs(avg) Rupture Area (km*km) 0.05 0.25 0.750 0.775 0.800 0.825 0.850 0.15 R. Graves Vr/Vs (avg) **IMavgl**

900

Capturing the uncertainty

In input parameters

- Perform sensitivities due to assumptions and parameter values
- Develop appropriate parameter space to sample in forward simulations

Application to dynamic codes simulations - considerations

- Define a few initial scenarios and define what bounds a problem:
 - What is "fixed" in the validation: M or moment? fault length? Initial stress level? How?
 - What velocity structure, upper Vs? Path properties to be specified?
 - How many realizations? Start with initial set of validation for *tuned* (optimized) simulations?
- Start thinking in terms of "rules"
 - Define input parameters, default values and ranges
 - Think how parameters can be set in a general sense from basic scenario definition
 - Rules will most likely be regional in nature
- Think about what uncertainties can be explored
 - Trade-off with computing resources?
- Define initial set of evaluation metrics; borrow what already exists and expand as needed

Thank you!

Validation Gauntlet Development

- I. Define application and key ground-motion parameters
- 2. Implement validation parameters on appropriate platform, generate plots and ASCII output
- 3. Form an evaluation panel; evaluate the ground-motion parameters
- 4. Develop the gauntlet (evaluation panel activity, performed outside the platform)
- 5. Implement the gauntlet on the platform so it provides fast feedback to model developers

Evaluation

Review panel

- Douglas Dreger (Chair), UC Berkeley
- Gregory Beroza, Stanford
- Steven Day, SDSU
- Christine Goulet, UC Berkeley
- Thomas Jordan, USC
- Paul Spudich, USGS
- Jonathan Stewart, UCLA
- Input for review
 - Modeler's documentation and self-assessment
 - BBP results (parts A and B)
 - Part A: criteria based on binned GOF according to M (event), R, T
 - Part B: simple pass-fail

