

Presentation for March 15, 2013 USGS, Menlo Park, CA

March 2013 SCEC Rupture Dynamics Code Comparison Workshop

Ruth A. Harris (U.S. Geological Survey)

Plans for this workshop

*See a quick overview of our group's activities to date

*Introduce new group members

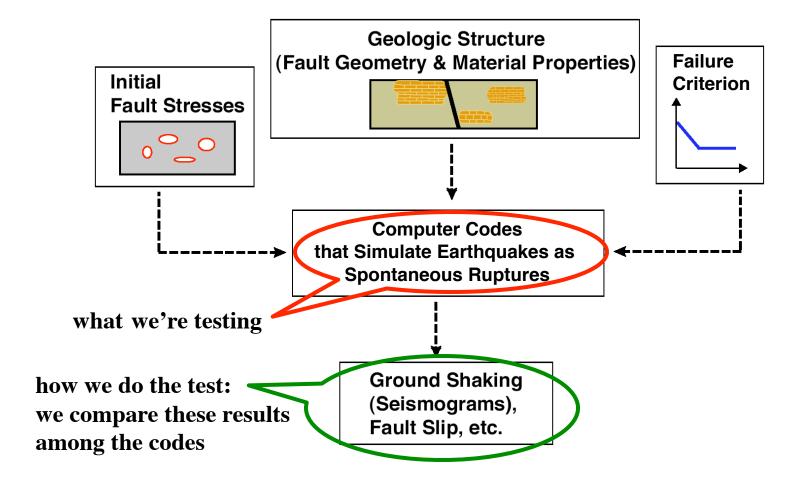
*Learn about the SCEC Community Stress Model

*Examine the results from the latest benchmarks

*Plan our next steps

*Visit the USGS rock mechanics lab

*Learn about and discuss models of the 2011 Tohoku earthquake


SCEC Rupture Dynamics Code Comparison Workshop

Friday March 15, 2013 U.S. Geological Survey, Menlo Park, CA

10:00	Introduction to the Workshop	Ruth Harris		
10:15	The SCEC Community Stress Model	Brad Aagaard		
10:35	The Benchmark Assignments and Results	Michael Barall/ All		
11:35	Discussion of Future Plans	Ruth Harris/ All		
12:15	Lunch			
13:15	Laboratory Tour of the Big Block	Brian Kilgore/ Greg McLaskey		
14:20	Use of Dynamic Rupture Modeling in Earthquake	Norm Abrahamson		
	Engineering Applications: User Needs and Schedule			
14:40	Break			
15:00	Tohoku Earthquake Dynamic Rupture Models			
15:00	Tohoku: Slip-Weakening Friction in an Elastic Model	Benchun Duan		
15:30	What can a simple slip-weakening model of the Tohoku earthquake tell us?	Yihe Huang		
16:00	Tohoku: Thermal Pressurization in an Elastic Model	Junle Jiang/ Nadia Lapusta		
16:30	Shallow Subduction Earthquakes: Slip-Weakening Friction	Shuo Ma		
	in an Elastoplastic Model			
17:00	Additional Group Discussion	Ruth Harris/ All		
17:30	Adjourn			

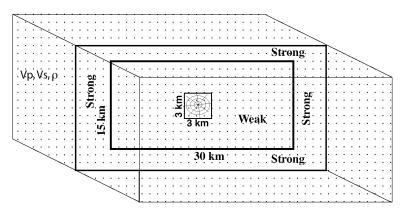
What our Group Does: We Test Computer Codes Used to Simulate Earthquakes

Overall Goal of our Code Verification Group

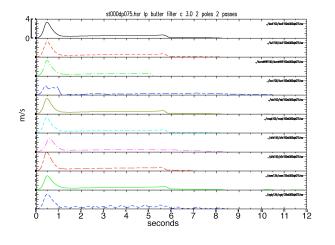
Compare the computational methods currently being used by SCEC and USGS scientists to simulate (spontaneous) earthquake rupture dynamics

Some Specific Objectives

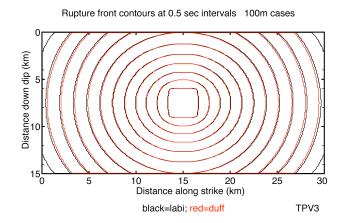
Understand if our methods are producing the same results when using the same assumptions about friction, crustal structure, fault geometry, etc.


Funding

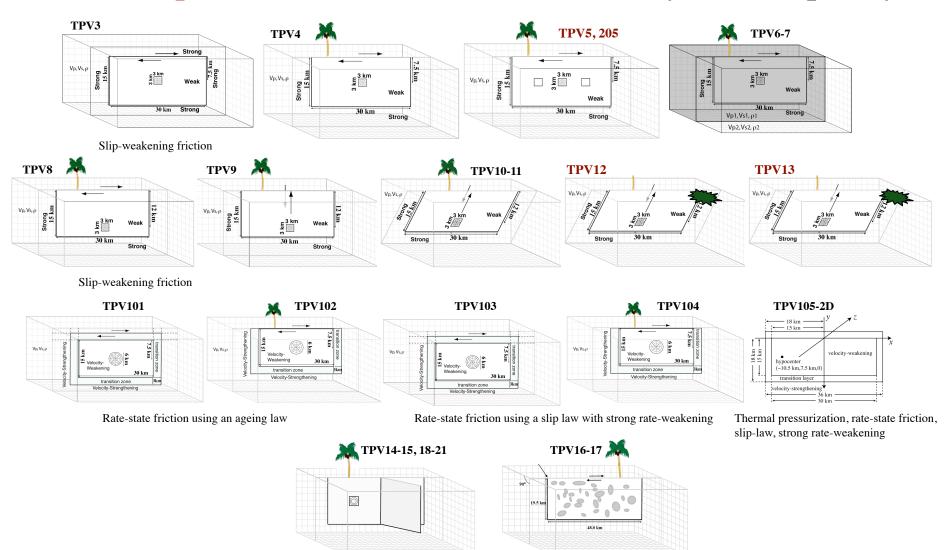
This project has been funded by the Southern California Earthquake Center, the U.S. Geological Survey, the U.S. Dept. of Energy, and the PG&E Company


Code Comparison Strategy Start simply

Spontaneous
rupture on a
vertical strike-slip
fault set in a
homogeneous
(materials)
elastic Fullspace



homogeneous initial stresses

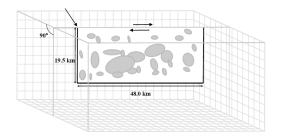

slip-weakening friction

Some Results

Code Comparison Benchmarks – Incrementally add complexity

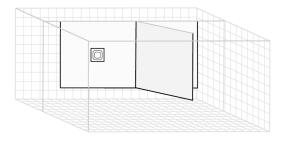
Slip-weakening friction

Slip-weakening friction


Code Comparison Strategy

Incrementally adding complexity: stress, fault geometry

Rupture on a vertical strike-slip fault set in a homogeneous material elastic halfspace,


Heterogeneous initial Stresses,

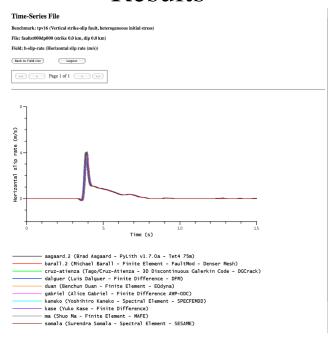
Slip-weakening friction

TPV16, 17

Rupture on a **Branching** strike-slip fault set in homogeneous (material) **Plastic yielding**, Slip-weakening friction

TPV18, 19, 20, 21 elastic, plastic, elastic, plastic

2012 BENCHMARKS

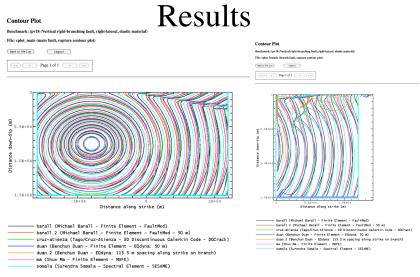


TPV16 (Heterogeneous Initial Stress, SW Friction, Elastic, Vertical Strike-Slip Fault)

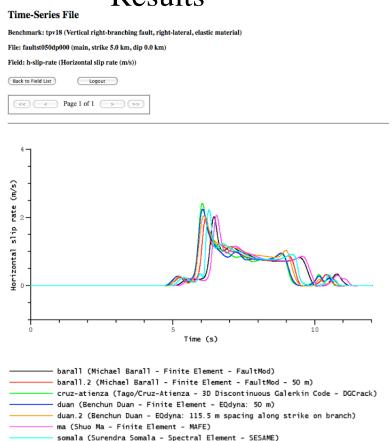
Assumptions **Contour Plot** Benchmark: tpv16 (Vertical strike-slip fault, heterogeneous initial stress) File: cplot (rupture contour plot) Back to File List Logout Results << < Page 1 of 1 >>> 1.5E+04 Distance along strike (m) aagaard.2 (Brad Aagaard - PyLith v1.7.0a - Tet4 75m) barall.2 (Michael Barall - Finite Element - FaultMod - Denser Mesh) cruz-atienza (Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code - DGCrack) dalguer (Luis Dalguer - Finite Difference - DFM) duan (Benchun Duan - Finite Element - EQdyna) gabriel (Alice Gabriel - Finite Difference AWP-ODC) kaneko (Yoshihiro Kaneko - Spectral Element - SPECFEM3D) kase (Yuko Kase - Finite Difference) ma (Shuo Ma - Finite Element - MAFE)

— somala (Surendra Somala - Spectral Element - SESAME)

Results

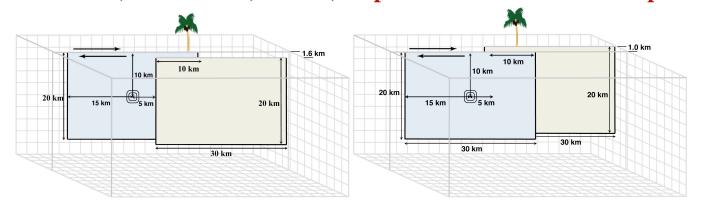


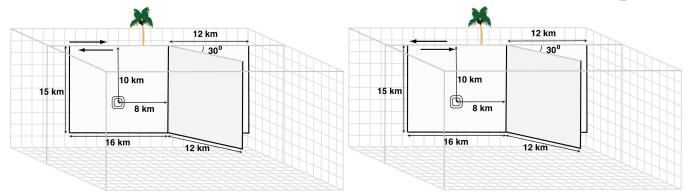
2012 Benchmark Success


TPV18 (SW Friction, Elastic, Branched Vertical Strike-Slip Fault)

Schematic Junction point 12 km Branch fault 7.5 km 15 km 12 km

Main Fault Branch


Results


2012 Benchmark Challenge

2012-2013 Benchmarks: Two-Fault Stepovers TPV22-23 (SW Friction, Elastic, Stepover in Vertical Strike-Slip Faults)

2012-2013 Benchmarks: Revisiting the Fault Branch TPV24-25 (SW Friction, Elastic, Branched Vertical Strike-Slip Fault)

Our 2011 SRL article

Harris, R.A., M. Barall, D.J. Andrews, B. Duan, S. Ma, E.M. Dunham, A.-A. Gabriel, Y. Kaneko, Y. Kase, B.T. Aagaard, D.D. Oglesby, J.-P. Ampuero, T.C. Hanks, N. Abrahamson,

Verifying a Computational Method for Predicting Extreme Ground Motion,

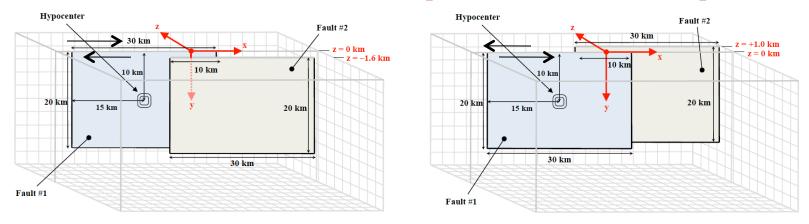
Seismological Research Letters, vol. 82, 638-644, 2011.

Our 2009 SRL article

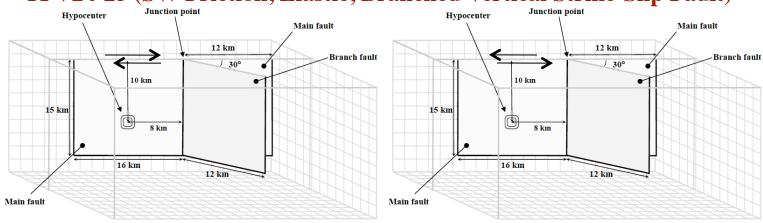
Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero,
H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day,
B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu,
S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton,
The SCEC/USGS Dynamic Earthquake-Rupture Code Verification Exercise,
Seismological Research Letters, vol. 80, 119-126, 2009.

links available on our website

http://scecdata.usc.edu/cvws


SCEC Rupture Dynamics Code Comparison Workshop

Friday March 15, 2013 U.S. Geological Survey, Menlo Park, CA


10:00	Introduction to the Workshop	Ruth Harris		
10:15	The SCEC Community Stress Model	Brad Aagaard		
10:35	The Benchmark Assignments and Results	Michael Barall/ All		
11:35	Discussion of Future Plans	Ruth Harris/ All		
12:15	Lunch			
13:15	Laboratory Tour of the Big Block	Brian Kilgore/ Greg McLaskey		
14:20	Use of Dynamic Rupture Modeling in Earthquake	Norm Abrahamson		
	Engineering Applications: User Needs and Schedule			
14:40	Break			
15:00	Tohoku Earthquake Dynamic Rupture Models			
15:00	Tohoku: Slip-Weakening Friction in an Elastic Model	Benchun Duan		
15:30	What can a simple slip-weakening model of the Tohoku earthquake tell us?	Yihe Huang		
16:00	Tohoku: Thermal Pressurization in an Elastic Model	Junle Jiang/ Nadia Lapusta		
16:30	Shallow Subduction Earthquakes: Slip-Weakening Friction	Shuo Ma		
	in an Elastoplastic Model			
17:00	Additional Group Discussion	Ruth Harris/ All		
17:30	Adjourn			

2012-2013 Benchmarks: Two-Fault Stepovers TPV22-23 (SW Friction, Elastic, Stepover in Vertical Strike-Slip Faults)

2012-2013 Benchmarks: Revisiting the Fault Branch TPV24-25 (SW Friction, Elastic, Branched Vertical Strike-Slip Fault)

