Qualitative modeling of earthquakes and aseismic slip

Dashed lines: every 50 years
Solid lines: every 1 sec
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Constitutive law on the fault:
Rate-and-state friction at low slip rates +
Potential co-seismic weakening due to pore pressure
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Potential co-seismic weakening due to shear heating and pore fluids

» Rapid shear heating during seismic slip causes expansion of pore fluids.
* This expansion may lead to increased pore pressure, depending on permeability .

» This could lead to co-seismic fault weakening,

additional to any slow-slip friction behavior. Temperature, 7
<=
(2 f (O- o p) Fluid pressure, p
i3 jﬁ“ >
Frictional heating |[_=
<)
Pore fluid pressure evolution
(with diffusion normal to the fault): ~ Y
op(x,y,2,t) _ azp N oT @, Hydraulic diffusivity (depends on permeability)
ot — Yhy ayz ot A : Fluid pressure change / temperature change

Hibab [1967]; Sibson [1973], Lachenbruch [1980]; Mase & Smith [1985,1987];
Segall & Rice [1995]; Andrews [2002]; Garagash & Rudnicki [2003a,b]; Rice
[2006]; Noda, Dunham, & Rice [2008]; Noda and Lapusta [2010], and others.



Rare unexpected event: 2011 Mw 9.0 Tohoku-Oki earthquake
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Extremely large unexpected
seismic slip (> 50 m) in shallower
areas which had been assumed to
be stably moving (and hence barriers
to earthquake rupture).

Inconsistency with prior ~Mw 8
events at the bottom of the
subducting interface.

Areas of lower slip generated
more high-frequency radiation.

Complex pattern of rupture: first
down, then up, then down again (lde
et al., Science, 2011).

Can we understand
these observations in a
single physical model?

Yes!
Noda and Lapusta,
Nature, 2013



1999 (M, 7.6) Chi-Chi earthquake in Taiwan
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1999 (M, 7.6) Chi-Chi earthquake in Taiwan

Its fault properties have been
measured in the lab using
samples obtained by drilling
(Tanikawa and Shimamoto, 2009).

North :
Velocity-strengthening,
“stable”

Lower permeability,
susceptible to weakening
through pore fluids

South :
Velocity-weakening,
susceptible to nucleation

Higher permeablility

Caution:
The data is based on samples
from shallow depths (200-300 m).



Model with simple geometry but
realistic, lab-measured fault rheology
and its correspondence to Tohoku-OKki
(c) //’ and Chi-Chi earthquakes
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Numerical simulation methodology for long-term fault slip punctuated by earthquakes
with all wave effects: Lapusta et al., 2000; Lapusta and Liu (2009); Noda and Lapusta (2010)



Snapshots of slip rate distribution on the faulit
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Snapshots
of slip rate
on the fault
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Qualitative match of long-term earthquake sequence behavior

Accumulation of fault slip
- A number of smaller events in the left patch
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Rich behavior of the patch which is stable at low velocities
but potentially unstable co-seismically
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Complex rupture pattern during largest events
1. Rapid rupture with a sharp peak in patch A

2. Acceleration of a slower rupture
without a sharp peak in patch B

3. Secondary backward-propagating rupture
in patch A

Qualitatively similar to Ide et al. [2011]
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Frequency contrast between slip in the two patches

Snapshots of slip rate in the 26th event
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Patch A has smaller slip but more high-
frequency content, reproducing observations
for Chi-Chi [Ma et al., 2003] and Tohoku-Oki
earthquake [Meng et al, 2011].

This effect could act alone or in combination
with other mechanisms for variations in
frequency content, such as heterogeneity of
friction properties [Meng et al., 2011].
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Conclusions

« The model qualitatively explains observations on a range of temporal scales for
two well-studied earthquakes (Chi-Chi and Tohoku-Oki).
- Largest slip in the segment that may have been creeping interseismically
- More frequent smaller events in the other segment
- More high-frequency radiation from lower-slip areas; variations in rupture direction

« Patches stable at low velocities but susceptible to high-velocity (co-seismic)
weakening show rich behavior in numerical simulations.

Implication for seismic hazard: The fact that a fault segment is creeping may not
automatically make it a barrier or preclude large co-seismic slip.

Implications for Tohoku-Oki: The shallow fault region with the largest co-seismic
slip may well have been creeping before the earthquake.

 We need more laboratory and theoretical studies to understand which materials/
fault structures are/may be susceptible to co-seismic weakening and more field
studies of whether creeping segments have had seismic events.



Can a large earthquake
propagate through the creeping section of San Andreas fault?

Surface Trace of
San Andreas Fault
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Such a scenario is possible if we have:

» Velocity-strengthening friction at
(low) interseismic slip rates

» Co-seismic weakening at (high)
seismic slip rates

Evidence for such behavior from

Resistivity, Ohm-m VE 1:1

Chi-Chi and Tohoku-Oki earthquakes

1000 100 10 1

Pacific Plate

Hickman, Zoback, Ellsworth, 2004



Model ingredients and parameters

3D elastodynamics represented by a spectral boundary integral equation method
c,=3 km,o=1/4, u=30 GPa [Lapusta and Liu, 2009]
Ambient effective normal stress o,, = 60 MPa

Rate- and state-dependent friction coefficient (aging law)
State-evolution distance L = 8 mm (A and B)
Direct effect parameter a = 0.0066 (A and B)
[Tanikawa and Shimamoto, Personal communication]
Steady-state rate dependency a - b=0.004 (A), —0.002 (B)
Friction coefficient at a reference (V, = 10 m/s) f, = 0.4 (A), 0.7 (B)
[Tanikawa and Shimamoto, 2009]

Frictional heating and resulting pore-pressure evolution (thermal pressurization)
with diffusion of heat and pore fluids away from the fault [Noda and Lapusta, 2010]
Hydraulic diffusivity e, = 710 m* (A), 3.5x10~ m* (B)
Undrained pore pressure change / temperature change
A =0.036 MPa/K (A),0.069 MPa/K (B) [T&S, 2009]
Half-width of the shear zone w =8 mm (A and B)

We treat the lab measurements as motivational rather than precise values,
since they are based on samples from two boreholes at shallow depths (200-300 m).



Temperature and pore pressure evolution

Temperature evolution (with diffusion normal to the fault):

T :Temperature

oT(x,y,z,t) T w o, : Thermal diffu.sivity |
ot = ~Gip 3,2 B @ :Heat generation per unit volume
e P p :Density

c :Heat capacity per unit mass
Heat source:

2
Yy
CXp| ———= w . Half width of the shear zone
w\/_ [ ] Wi Z

Pore fluid pressure evolution (with diffusion normal to the fault):

@y : Hydraulic diffusivity (depends on permeability)
A : Fluid pressure change / temperature change
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2011 Great Tohoku-Oki earthquake

(a) old coupling model and slip model
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Extremely large seismic slip
(> 60 m) in shallower areas
where the fault was assumed
to be creeping.

Inconsistency with prior events:
Smaller events at the bottom of
the subducting interface.

Areas of lower slip generated
more high-frequency radiation.

Seismic slip / slip rate:
Wei et al., 2012

“0Old” coupling model:
Loveless & Meade, JGR, 2010

“New” coupling model:
Loveless & Meade, GRL, 2011

Back projection results:
Meng et al., GRL, 2011
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Lab-measured permeability
for the Chi-Chi earthquake fault
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Lab-measured rate-and-state parameters
for the Chi-Chi earthquake fault

North: Velocity strengthening
(despite having much larger slip!)

South: Velocity weakening
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Samples are collected from bore holes at 200-300 m depth
in the Northern and Southern regions.

Tanikawa and Shimamoto, 2009



