Dynamic Modeling of the 2004 M_w 6.0 Parkfield Earthquake

Shuo Ma

In Collaboration with Susana Custódio, Ralph Archuleta, and Pengcheng Liu

SCEC Code Validation Workshop March 1, 2017

Parkfield Earthquake, M_w 6.0 September 28, 2004

Distribution of Peak Acceleration

8 strong ground motion stations < 1 km to the fault

40 station between 1 and 10 km

13 continuous GPS stations

Shakal et al, 2004

Velocity Structure

"Softer" Franciscan assemblage rocks (NE)

"Stiffer" Salinian granitic rocks (SW)

Dynamic Rupture on a Bi-Material Interface

asymmetry in normal stress variations

e.g., Harris and Day (1997, 2005), Rubin and Ampuero (2007) ...

3D Simulation

4.0 sec

Harris and Day, 2005

Laboratory Confirmation

(B)

Xia et al., 2005

Supershear

Aftershock Asymmetry of Micro-Earthquakes

The asymmetry in normal stress variation on a bimaterial interface can relate to the observed aftershock asymmetry on the SAF (Rubin and Ampuero, 2007)

1D Velocity Structure

From Cuscodio et al. (2005)

1D velocity model interpolated from the 3D velocity model of Thurber et al. (2004)

Slip and Static Stress Drop

solve a static problem

Slip Weakening Friction

Andrews, 1976

Stress Drop and Strength Excess

Model B

A nearly constant S ratio was used to determine the strength excess.

Seismicity 1984-2005

Blue: seismicity before the 2004 mainshock

Red: the 2004 mainshock and its aftershocks

Thurber et al., 2006

FEM Calculation Parameters

Fault Strike: 140°

Fault Dip: 90°

Fault Length: 40 km

Fault Width: 15 km (the fault is 500 m below the surface)

Element size: 100 m

Time Step: 0.012 s

Critical Slip-Weakening Distance (D_c): 0.15 m

Initial normal stress on fault: 60 MPa

Dynamic frictional coefficient: 0.3

Initial and static friction coefficients are determined by stress drop and strength excess.

Evolution of Slip Rate, Shear and Normal Stress Changes

Space-Time Plot of Slip Velocity at the Hypocentral Depth

Peak Surface Velocity

Synthetics vs. Data: Cholame

Synthetics vs. Data: Stone Canyon

Synthetics vs. Data: Vineyard Canyon

Fault-Normal Velocities Very Close to the Fault

Misfit for 43 Stations

misfit =
$$\sum_{i=1}^{nstn} \sum_{n=1}^{npts} [v_i^{syn}(t_n) - v_i^{data}(t_n)]^2$$

Custódio et al. (2005)fault-parallel velocity: $2.92 \text{ m}^2/\text{s}^2$ fault-normal velocity: $4.67 \text{ m}^2/\text{s}^2$ vertical velocity: $1.14 \text{ m}^2/\text{s}^2$

Model A

fault-parallel velocity:3.94 m²/s²fault-normal velocity:5.82 m²/s²vertical velocity:1.13 m²/s²

Model B

fault-parallel velocity: $3.30 \text{ m}^2/\text{s}^2$ fault-normal velocity: $5.66 \text{ m}^2/\text{s}^2$ vertical velocity: $0.91 \text{ m}^2/\text{s}^2$

Coseismic Stress Change vs. Seismicity Before (blue) and After (red) the Mainshock

Predicted Coseismic Offset vs. GPS

Model A

Model B

GPS absolute offsets were obtained by taking the difference of averaged positions over 40 - 100 s after the mainshock and 100 s before the mainshock.

Slip Distributions

Conclusions

 Buried slips on the SAF between 5 km and 10 km depth can largely explain both ground motion and GPS observations during the 2004 Parkfield earthquake.

 We found the stress drop to be ~ 10 MPa in the hypocentral region and 1~2 MPa on other slipped regions of the fault.

 The main rupture front propagates bilaterially at almost a constant subshear rupture velocity ~3 km/s.

 Material contrasts across the fault caused significant normal stress variations on the fault, which affects strongly rupture propagation and ground motion.

The large ground motion in Cholame can be attributed to the large dynamic stress drop in the positive (southeast) direction.