Heterogeneous Initial Stress Conditions for Spontaneous Rupture Modeling

Seok Goo Song

URS Group, Inc. Pasadena, CA 91101

SCEC 100-runs workshop at USC May 21, 2010

Outline

- Spatial heterogeneity with 1-point and 2-point statistics
 - Do we pay enough attention to 1-point statistics?
 - How to constrain them from data?
- Two-step approach
 - Quasi-dynamic multi-cycle simulation with RS friction law
 - Full-dynamic single-event simulation with SW friction law

Spontaneous Rupture Modeling with Slip-weakening Friction Law

(Ida, 1972; Andrews, 1976)

- Stress drop: from given slip models, or assumed stochastic model (e.g., $k^{-\nu}$)
- Fracture energy: somewhat arbitrary, i.e., S parameter, constant yield stress, strength excess, d_c, etc.

Earthquake Source Statistics

1-Point Statistics

- Scaling of mean slip and sigma with earthquake size
- Supershear and subshear
- Crack-like and pulse-like rupture
- Stick-slip and creeping

2-Point statistics

- Auto-coherence: define heterogeneity of source parameters
- Cross-coherence: control coupling between different parameters

Spatial Random Field Model

$$X \sim \mathcal{N}(\mu, \Sigma)$$

$$\mu = (\mu_1, \mu_2, \mu_3, \dots, \mu_9)^T$$

= $(\mu, \mu, \mu, \dots, \mu)^T$

$$\begin{split} \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{1}\sigma_{1}\rho_{11}, \, \sigma_{1}\sigma_{2}\rho_{12}, \, \dots, \, \sigma_{1}\sigma_{9}\rho_{19} \\ \sigma_{2}\sigma_{1}\rho_{21}, \, \sigma_{2}\sigma_{2}\rho_{22}, \, \dots, \, \sigma_{2}\sigma_{9}\rho_{29} \\ & \dots \\ \sigma_{9}\sigma_{1}\rho_{91}, \, \sigma_{9}\sigma_{2}\rho_{92}, \, \dots, \, \sigma_{9}\sigma_{9}\rho_{99} \end{bmatrix} \end{split}$$

Reproduction of

1-point and 2-point statistics

Slip Realizations with the Same Spectral Decay (2-point stats)

Variability in Ground Motion

with different 1-point statistics

Scaling law for sigma?

Log (mu) = a M + b [Somerville et al., 1999]

Log (sigma) = a M + b missing!!

 $Log(a_x) = a M + b$ [Mai and Beroza, 2002]

1-point and 2-point statistics in Ground Motion Prediction

1-point statistics in GMP

Recorded ground motions Mean prediction Mean prediction Mean prediction +/- one standard deviation Distance (km)

2-point statistics in GMP

(Image source: J. Baker's website at Stanford Univ.)

Depth-dependency (Non-stationarity) of earthquake source statistics

Constraining 1-point and 2-point statistics with Bayesian inversion

Accurate vs. Precise Solutions

$$\min \|\mathbf{d} - \mathbf{G}\mathbf{m}\|_2^2 + \alpha^2 \|\mathbf{L}\mathbf{m}\|_2^2 , \widehat{\mathbf{m}} = (\mathbf{G}^T\mathbf{G} + \alpha^2\mathbf{L}^T\mathbf{L})^{-1}\mathbf{G}^T\mathbf{d}$$

Mean squared error:

 $E(\widehat{\boldsymbol{m}}) \neq \boldsymbol{m}^{true}$

$$MSE(\widehat{m}) = E((\widehat{m} - m^{true})^2) = Var(\widehat{m}) + (Bias(\widehat{m}))^2$$

=> biased estimator!!

Tikhonov Regularization

 Advantage: improve the stability of inversion, otherwise very ill-posed inverse problems

$$\min \ \| \boldsymbol{d} - \boldsymbol{G} \boldsymbol{m} \|_2^2 + \alpha^2 \| \boldsymbol{L} \boldsymbol{m} \|_2^2$$
 , $\boldsymbol{\widehat{m}} = (\boldsymbol{G}^T \boldsymbol{G} + \alpha^2 \boldsymbol{L}^T \boldsymbol{L})^{-1} \boldsymbol{G}^T \boldsymbol{d}$

- By-products:
 - Lower resolution => inaccurate estimation of solutions
 - Biased => inaccurate estimation of uncertainty
 - Contaminates 1-point and 2-point stats of earthquake slip (and stress drop)

Prior model distribution

$$\sigma_{M}(\boldsymbol{m}) = k \rho_{M}(\boldsymbol{m}) \cdot \rho_{D}(\boldsymbol{g}(\boldsymbol{m}))$$

$$\rho_M(\boldsymbol{m}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

1-point statistics

2-point statistics

1-Point Statistics

Dashed: prior Solid: posterior

Spatial Coherence (2-point stats) (dashed: prior, solid: posterior)

Estimated Slip Distributions

Inferring dynamic parameters from kinematic rupture models

 $\mathbf{u}(\mathbf{x}, \mathbf{t}) => \mathbf{T}(\mathbf{x}, \mathbf{t}) => \mathrm{sd}, \mathrm{SE}, \mathrm{d}_{\mathrm{c}}$ (Ide and Takeo, 1997; Tinti et al., 2005)

(Song and Somerville, 2010)

Spatial coherence from dynamic rupture models

(Song and Somerville, 2010)

Summary (Part I)

- We should pay more attention to 1-point statistics and its non-stationarity.
- We may better constrain 1-point and 2-point statistics of source parameters by regularizing the model space with the same form of 1-point and 2-point statistics with Bayesian inversion.

Outline

- Spatial heterogeneity with 1-point and 2-point statistics
 - Do we pay enough attention to 1-point statistics?
 - How to constrain them from data?
- Two-step approach
 - Quasi-dynamic multi-cycle simulation with RS friction law
 - Full-dynamic single-event simulation with SW friction law
 - Contributors: G. Hillers, A. Pitarka, P.M. Mai, L.A. Dalguer, P. Somerville
 - Supported by Japan Nuclear Energy Safety (JNES) through Geo
 Research Institute (GRI)

Quasi-dynamic multi-cycle simulation

a, b, L => sd, SE, d_c => slip, V_r , V_{max} => PGV, PGA, SA

Rate and state-dependent friction law

(model setup from Hillers et al., 2006)

(Dieterich, 1979; Ruina, 1983)

Input parameters (a, b, L) in the multi-cycle simulation

Gutenberg-Richter vs. Characteristics?

L to d_c conversion

$$d_{\mathrm{c}1} \cong L * 15$$
 $d_{\mathrm{c}2} \cong L * \ln\left(\frac{\theta_{init} \ v_0}{L}\right)$

L to d_c conversion

Spatial cross-coherence

Summary (Part II)

- Physically self-consistent dynamic input parameters inferred from multi-cycle simulation
- Generate a series of events occurring on a single fault system through a cycle of the fault evolution
- Applicability to "100-runs"
 - Currently applied to strike-slip
 - Magnitude range