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Outline

e Spatial heterogeneity with 1-point and 2-point
statistics
— Do we pay enough attention to 1-point statistics?
— How to constrain them from data?

 Two-step approach
— Quasi-dynamic multi-cycle simulation with RS friction law
— Full-dynamic single-event simulation with SW friction law
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Spontaneous Rupture Modeling
with Slip-weakening Friction Law

Slip-Weakening Model

yield stress }strength Bxcess

initial stress

sliding friction }Stress drop

de (slip weakening distance)

(Ida, 1972; Andrews, 1976)

Stress drop: from given slip
models, or assumed stochastic
model (e.g., k")

Fracture energy: somewhat
arbitrary, i.e., S parameter,
constant yield stress, strength
excess, d., etc.



Earthquake Source Statistics

1-Point Statistics

Scaling of mean slip and
sigma with earthquake size

Supershear and subshear

Crack-like and pulse-like
rupture

Stick-slip and creeping
A
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(slip, Vr, Vmax, IT)
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2-Point statistics

Auto-coherence: define
heterogeneity of source
parameters

Cross-coherence: control
coupling between different
parameters

slip vs. Vr




Spatial Random Field Model
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Reproduction of
1-point and 2-point statistics

1) X NJV(H,O)
2) X ~N(u,c?%1)

3) X ~~/V(M,Z)




Slip Realizations
with the Same Spectral Decay (2-point stats)

mu = sigma = 160 cm
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Variability in Ground Motion
with different 1-point statistics
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Scaling law for sigma?

Log(mu)=aM+Db [Somerville et al., 1999]
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Log (sigma)=aM+Db
Log (a)=aM+D [Mai and Beroza, 2002]

distance (km)




1-point and 2-point statistics
in Ground Motion Prediction

1-point statistics in GMP 2-point statistics in GMP
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©  Recorded ground motions
Mean prediction
= = = Mean prediction +/- one standard deviation
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(Image source: J. Baker’s website at Stanford Univ.)



Depth-dependency (Non-stationarity)
of earthquake source statistics
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[Scholz, 2002]



Constraining 1-point and 2-point statistics

with Bayesian inversion
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(1999 Izmit, Turkey, event)




Accurate vs. Precise Solutions

(a) Accurate Solution (b) Precise Solution

min ||d — Gm||5 + «?||Lm||3,m = (G'G + «’L'L)"'G'd

E(m) + mtue =>  biased estimator!!

Mean squared error:

MSE() = E((f — m™)?) = Var(i) + (Bias(m))?




Tikhonov Regularization

 Advantage: improve the stability of inversion,
otherwise very ill-posed inverse problems

min |[d — Gm||3 + o?||Lm]|5,m = (GTG + «*’L'L) 1G'd

e By-products:
— Lower resolution => inaccurate estimation of solutions
— Biased => inaccurate estimation of uncertainty

— Contaminates 1-point and 2-point stats of earthquake slip
(and stress drop)



Prior model distribution

oy (m) = kpy (m) - pp(g(m))

pu(m) = N(p, %)

1-point statistics 2-point statistics

Gaussian vs. Exponential correlogram
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1-Point Statistics
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Spatial Coherence (2-point stats)
(dashed: prior, solid: posterior)
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Estimated Slip Distributions
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Inferring dynamic parameters
from kinematic rupture models

u(x, t) => T(x, t) =>sd, SE, d.

(Ide and Takeo, 1997; Tinti et al., 2005)

(Song and Somerville, 2010)




Spatial coherence
from dynamic rupture models
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Summary (Part I)

We should pay more attention to 1-point statistics and its
non-stationarity.

We may better constrain 1-point and 2-point statistics of
source parameters by regularizing the model space with the

same form of 1-point and 2-point statistics with Bayesian
inversion.



Outline

e Spatial heterogeneity with 1-point and 2-point statistics
— Do we pay enough attention to 1-point statistics?
— How to constrain them from data?

 Two-step approach
— Quasi-dynamic multi-cycle simulation with RS friction law

— Full-dynamic single-event simulation with SW friction law
— Contributors: G. Hillers, A. Pitarka, P.M. Mai, L.A. Dalguer, P. Somerville

— Supported by Japan Nuclear Energy Safety (JNES) through Geo
Research Institute (GRI)



Quasi-dynamic multi-cycle simulation

C YN

a,b,L=>sd, SE, d. =>slip, V,, V., = PGV, PGA, SA

max

Rate and state-dependent friction law

Okm =z > =24km

fanlt plane rontrolled by rabe

and state-dependent friction

(model setup from Hillers et al., 2006) (Dieterich, 1979; Ruina, 1983)



Input parameters (a, b, L)
in the multi-cycle simulation

2D Log(L) Distribution RSU14 (ax =2 km)
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Gutenberg-Richter vs. Characteristics?
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(Cocco and Bizzarri, 2002; Bizzarri and Cocco, 2003)




L to d_conversion
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Slip (m)

0 20 40 60 30 100 120

Stress (MPa)
0 T T T T T T

-10

0 20 40 60 80 100 120

30
20
10

0 20 40 60 80 100 120

-1.6

é 1.4

o -1.6

g -1.8
=2

ks

(o]

along strike (km)




slip (cm)
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Spatial cross-coherence

slip ve. Vr slip vs. Vmax
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Summary (Part Il)

Physically self-consistent dynamic input parameters inferred
from multi-cycle simulation

Generate a series of events occurring on a single fault system
through a cycle of the fault evolution

Applicability to “100-runs”
— Currently applied to strike-slip
— Magnitude range



