Specifying Initial Stress for Dyanamic Heterogeneous Earthquake Source Models

D. J. Andrews and Michael Barall

2D Self-similar random function

 $1 < 1/\lambda < 64$

Band-pass filtered functions (all with same color scale)

 $1 < 1/\lambda < 4$

 $4 < 1/\lambda < 16$

 $16 < 1/\lambda < 64$

Self-similar function *w*(*x*,*z*)

Ratio of shear stress to normal stress $\tau/\sigma = [f_d + \alpha w(x,z)] D(z)$

where

- *f*_d dynamic friction coefficient
- α scale factor

D(*z*) depth conditioning function

Stress ratio minus dynamic friction

Five random models, Gaussian distribution

Five random models, Asperity distribution

D_C is **not** constant.

It is a myth that the friction law determines the physics of faulting. Off-fault energy loss is more important.

Joe Andrews' choices for dynamic rupture modeling: 1.Time weakening 2.Prescribed initiation 3.Velocity toughening To model an event with different magnitude, adjust parameters of this model.

- L Rupture length
- z_0 Characteristic depth in depth-conditioning function
- α Scale factor, determines average stress drop