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DEFINITIONS

« By fault roughness, | mean components of morphology best treated as
random field

» Departures from planarity widely distributed in location and scale
» Sufficiently complex to merit (require) stochastic representation

« What | mean by rupture simulation

* Dynamic models, 2D or 3D, with slip- or rate-weakened friction

* Neglect geometrical nonlinearity (i.e., minimum roughness scale >> slip)
« Un-branched fault surfaces

* Power-law roughness

Most examples (not quite all) have additional simplifications:
Highly simplified initial stress state (stress tensor depth dependent only)

Simple elastic or (pressure-dependent) elastoplastic continuum
Self-similar roughness spectrum (Hurst exponent H=1)



Fault surface roughness

Spectral Model for Fault Geometry
(Candela et al., 2013)
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«  Self-similar over ~10 orders of magnitude
* Modeled as random field, Hurst exponent ~1
+ Max Frequency > 10 Hz =& Min scale ~100 m



SUMMARY

Roughness:

Contributes to high-frequency GM (may be the principal source)

Contributes to GM statistical variability
Modifies kinematic parameter correlations
Nucleates transient, buried supershear bursts

Suppresses sustained, shallow SS events

Creates frequency-dependent radiation patterns

Produces power-law co-seismic surface slip fluctuations

GM = “Ground Motion”
SS = “Supershear”



High-Frequency GM: 2D Models

* Fault roughness has essential role in HF ground motion excitation

» At least qualitatively consistent with observed features of ruptures
and ground acceleration

.K'IRO

(a) 0 50 100 150 200
10 : . : : . 38.88
=102
8t 31.10
,_E, 6 W=50°, t/0°=0.3135 ¥=20°, %/6°=0.3016 2333
o [ 1 S ~ 10! ~ 10!
S 4t 15.55 oL E (b) é Lucerne Valley
% ~ ~ 1992 Landers earthquake
2| 7.78 K] 2
0
0 1 1 1 1 L 0 g 10 E 100
-10 0 10 20 30 40 50 60 o =
x (km) g g
(b) xIR, g 107 £ 107
130 135 140 145 150 YPx10-3 2 3
T T T T T 6 (=¥ (=¥
0.9 W=20°, ©/6°=0.3016 3 ; ;
55 v 5 4 & 1072 S 102
- iR g E
< 03 1 2 5 5
0 L L 1 L L 0 0 QS) 1073 q8) 10-3
39 40 41 4 43 44 45 < 100 < 0.1 1 10 100
x (km
%en) frequency (Hz) frequency (Hz)
(C) x/RO
130 135 140 145 150 ypxltﬁH
09 f W=50°, ¢i0™=03135 3
E 06f 2 4
R
=l : Dunham et al., 2011
A ; 0 (Dunham et al.,
39 40 41 42 43 44 45

x (km)



Depth (km)

Stress (MPa)
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% nucleation center at (X}, Xy) = (0 km, 12 km)

effective normal stress
- - - - shear stress

High-Frequency GM: 3D Models

Setup of Initial State

Lithostatic stress
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planar free surface (x,=0)

+ Self-similar (80 m to 80 km scale range)
+ RMS-offset + scale-length = 0.005

+ Rate-state with dynamic weakening

« Top 1 km velocity strengthening
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Site-Corrected GMRotD50 Response Spectra Compared to the Next Generation

High-Frequency Ground Motion: GMPE Comparison)

Attenuation (NGA) Curves

Site Amplification: SH plane-wave response of the generic rock structure representative of western North America

Site Attenuation: €

Half-space Model

Mw=7.23

rock sites [Boore and Joyner, 1997]

e f with site anelastic loss exponent (defined by Anderson and Hough [1984]) k = 0.04 sec
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Ground Motion Variability: Within-EQ Sigma

* Roughness is strong source of GM variability (sigma)
« Random-field heterogeneities moderate sigma

Without Random Scatterers
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Kinematic Parameter Correlations: Rupture Velocity Example

Roughness
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- Rise time decorrelates
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Supershear Rupture

2D simulations (Bruhat et al.,
2016):

Overall roughness favors
nucleation of SS transients

Local smoothness favors
sustained SS rupture

3D (Yao, 2017):

Roughness favors buried SS
transients

Smoothness favors shallow,
sustained SS ruptures

Yao, 2017 (SDSU PhD Thesis)
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Radiation Pattern

B Radiation Patterns
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In (FN/FP)

Radiation Pattern: Effect on Strong Motion

Fault normal/parallel GM ratios vs frequency in

kinematic simulations of Graves and Pitarka (2016)
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Co-seismic Surface Slip

Log Power Spectrum

Power Spectral Density
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Effect of Undrained Gouge Deformation

* Moderates rupture complexity

(a) MC model (dry) ,
2
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Normalized rupture velocity

* Roles of “releasing” and “restraining”

orientations are reversed (as in Harris & Day,

1993)

* Rupture velocity fluctuations very similar to
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SUMMARY

« Contributes to high-frequency GM (may be the principal source)
~10 Hz @ ~100 km is now calculable

» Contributes to GM statistical variability
But random heterogeneities are at least equally important

* Modifies kinematic parameter correlations
Reduces rupture coherence

* Promotes transient, buried supershear bursts
Most are small and and probably undetectable

» Suppresses sustained, shallow SS events
Consistent with observed association of SS with smooth fault segments

» Creates frequency-dependent radiation patterns
Fills nodes at frequencies > ~3 Hz and improves FN/FP ratio predictions

* Produces power-law co-seismic surface-slip fluctuations
May be partial (but incomplete) explanation of coseismic slip maps

* Model with undrained gouge compaction has mostly similar GM implications
Roles of restraining and releasing features are reversed.
Would have big effect on prediction of, e.g., rupture termination points.



