SEAS Benchmark Problems BP7-QD/FD-A/S

Valère Lambert, Junle Jiang and Brittany Erickson

November, 8 2021; Updated May 24, 2023

Benchmark problems BP7 are a set of three-dimensional (3D) problems in either an infinite whole-space or a finite elastic volume. The problems consider slip on a 2D planar fault with a single circular asperity governed by velocity-weakening friction and either the aging or slip state evolution law. The model size, resolution, initial and boundary conditions, and output are designed specifically for 3D problems.

We denote different sub-problems of BP7 with suffices (-QD: quasi-dynamic; -FD: fully dynamic; -A: aging law; -S: slip law) as:
BP7-FD-A: Fully dynamic problem using the aging law for frictional state evolution
BP7-FD-S: Fully dynamic problem using the slip law for frictional state evolution
BP7-QD-A: Quasi-dynamic problem using the aging law for frictional state evolution
BP7-QD-S: Quasi-dynamic problem using the slip law for frictional state evolution

1 3D Problem Setup

Problems BP7-FD/QD-A/S are considered for both an infinite whole-space or finite elastic domain. For infinite domain problems, the medium is assumed to a homogeneous, isotropic, whole-space defined by:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

A planar fault is embedded at $x_{1}=0$, see Figure 1. We use the notation " + " and "-" to refer to the side of the fault with x_{1} positive, and x_{1} negative, respectively. The medium deforms with respect to a prestressed reference configuration at time $t=0$; displacements and strains are measured with respect to this reference configuration. The prestress tensor is $\boldsymbol{\sigma}^{0}$, which satisfies the equilibrium equation.

We assume 3D motion, letting $u_{i}=u_{i}(\mathbf{x}, t), i=1,2,3$ denote the displacement in the i direction. For fully dynamic problems BP7-FD-A/S, motion is governed by the momentum balance equation:

$$
\begin{equation*}
\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\nabla \cdot \boldsymbol{\sigma} \tag{1}
\end{equation*}
$$

where ρ is the material density. For quasi-dynamic problems BP7-QD-A/S, inertia is neglected and motion is governed by the equilibrium equation:

$$
\begin{equation*}
0=\nabla \cdot \boldsymbol{\sigma} \tag{2}
\end{equation*}
$$

The solution to (1|2) can be expressed as the superposition of a rigid body translation with zero associated stress changes, denoted $\mathbf{u}^{\text {rigid }}$, and the displacements, strains and stress

Figure 1: This benchmark considers 3D motion with a planar fault embedded in a either a finite homogeneous, linear elastic domain or whole-space. The fault is governed by rate-and-state friction in the region $\left|x_{3}\right| \leq W_{\mathrm{f}}$ and $\left|x_{2}\right| \leq l_{\mathrm{f}}$, outside of which it creeps at an imposed constant horizontal rate V_{L} (gray) which is constant with the rigid body plate rate V_{p}. The velocity-weakening region (the circle in light green; $\sqrt{x_{2}^{2}+x_{3}^{2}} \leq R$) is surrounded by velocity-strengthening regions (blue). The first rupture is nucleated in a smooth manner about the hypocenter y.
changes due to fault slip differing from steady slip provided by the rigid body translation. The rigid body translation is different for the two sub-domains, and the discontinuity in that translational motion across the fault is the long-term slip.

The stresses are given by $\sigma_{i j}=\sigma_{i j}^{0}+\Delta \sigma_{i j}$, the sum of the initial stress and the elastic stress changes. Deformation with respect to the reference configuration is assumed to be linear elastic. Hooke's law relates stresses to strains by:

$$
\begin{equation*}
\sigma_{i j}=\sigma_{i j}^{0}+\lambda \epsilon_{k k} \delta_{i j}+2 \mu \epsilon_{i j} \tag{3}
\end{equation*}
$$

for shear modulus μ and Lamé's first parameter λ.

2 Interface and Boundary Conditions

2.1 Interface conditions

At $x_{1}=0$, the fault defines the interface and we supplement equations (11)-(3) with six interface conditions. We assume a "no-opening condition" on the fault, namely that:

$$
\begin{equation*}
u_{1}\left(0^{+}, x_{2}, x_{3}, t\right)=u_{1}\left(0^{-}, x_{2}, x_{3}, t\right), \tag{4}
\end{equation*}
$$

and define the slip vector:

$$
\begin{equation*}
s_{j}\left(x_{2}, x_{3}, t\right)=u_{j}\left(0^{+}, x_{2}, x_{3}, t\right)-u_{j}\left(0^{-}, x_{2}, x_{3}, t\right), \quad j=2,3, \tag{5}
\end{equation*}
$$

i.e. the jump in displacements in the $x_{2^{-}}$and x_{3}-directions across the fault, with right-lateral motion yielding positive values of s_{2}. Positive values of s_{3} occur when the + side of fault moves in the positive x_{3}-direction and the - side moves in the negative x_{3}-direction.

We define the slip velocity vector \boldsymbol{V} in terms of the components:

$$
\begin{equation*}
V_{j}=\partial s_{j} / \partial t, \quad j=2,3, \tag{6}
\end{equation*}
$$

letting $V=\|\boldsymbol{V}\|$ denote the norm of the vector.
We require that components of the traction vector be equal and opposite across the fault, which yields the three conditions:

$$
\begin{align*}
& \sigma_{11}\left(0^{+}, x_{2}, x_{3}, t\right)=\sigma_{11}\left(0^{-}, x_{2}, x_{3}, t\right), \tag{7a}\\
& \sigma_{21}\left(0^{+}, x_{2}, x_{3}, t\right)=\sigma_{21}\left(0^{-}, x_{2}, x_{3}, t\right), \tag{7b}\\
& \sigma_{31}\left(0^{+}, x_{2}, x_{3}, t\right)=\sigma_{31}\left(0^{-}, x_{2}, x_{3}, t\right), \tag{7c}
\end{align*}
$$

The total normal stress is given by the prestress and does not change in time. We denote this as $\sigma=-\sigma_{11}^{0}$, which is positive in compression and spatially uniform.

The fault shear stress vector is given by:

$$
\boldsymbol{\tau}=\left[\begin{array}{c}
\tau_{y} \tag{8}\\
\tau_{z}
\end{array}\right]
$$

For BP7-FD-A/S, the fault shear stress $\boldsymbol{\tau}$ is the sum of the reference shear tractions $\boldsymbol{\tau}^{0}$, with components $\tau_{y}^{0}=\sigma_{21}^{0}$ and $\tau_{z}^{0}=\sigma_{31}^{0}$, a shear stress perturbation to nucleate the first rupture $\Delta \boldsymbol{\tau}^{0}$ (discussed futher in section 3.2), and the shear stress change $\Delta \boldsymbol{\tau}$ due to elastic deformation:

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{\tau}^{0}+\Delta \boldsymbol{\tau}^{0}+\Delta \boldsymbol{\tau}, \quad(\mathrm{BP} 7-\mathrm{FD}) \tag{9}
\end{equation*}
$$

For BP7-QD-A/S, the fault shear stress is the sum of the reference shear tractions $\boldsymbol{\tau}^{0}$, the shear stress perturbation to nucleate the first rupture $\Delta \boldsymbol{\tau}^{0}$, the shear stress change $\Delta \boldsymbol{\tau}$ due to (quasi-static) deformation, and the radiation damping approximation to inertia:

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{\tau}^{0}+\Delta \boldsymbol{\tau}^{0}+\Delta \boldsymbol{\tau}-\eta \boldsymbol{V}, \quad(\mathrm{BP} 7-\mathrm{QD}) \tag{10}
\end{equation*}
$$

where $\eta=\mu / 2 c_{\mathrm{s}}$ is half the shear-wave impedance for shear wave speed $c_{\mathrm{s}}=\sqrt{\mu / \rho}$ and density ρ. Note that positive values of τ_{y} indicate stress that tends to cause right-lateral faulting and positive values of τ_{z} indicates stress that tends to cause the + side of the fault to move in the positive x_{3} direction and the - side to move in the negative x_{3}-direction.

Within the frictional domain $\left(x_{2}, x_{3}\right) \in \Omega_{f}=\left(-l_{\mathrm{f}}, l_{\mathrm{f}}\right) \times\left(-W_{\mathrm{f}}, W_{\mathrm{f}}\right)$ we impose rate-andstate friction where shear stress on the fault is equal to fault shear resistance \boldsymbol{F}, namely:

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{F}(\boldsymbol{V}, \theta) \tag{11}
\end{equation*}
$$

The fault shear resistance is defined as:

$$
\begin{equation*}
\boldsymbol{F}=\bar{\sigma} f(V, \theta) \frac{\mathbf{V}}{V} \tag{12}
\end{equation*}
$$

where θ is the state variable and $\bar{\sigma}=\sigma-p$ is the effective normal stress on the fault for pore-pressure p. For $\mathbf{B P} 7-\mathbf{Q D} / \mathbf{F D}-\mathbf{A}, \theta$ evolves according to the aging law:

$$
\begin{equation*}
\frac{d \theta}{d t}=1-\frac{V \theta}{D_{\mathrm{RS}}} . \quad(\mathrm{BP} 7-\mathrm{A}) \tag{13}
\end{equation*}
$$

For BP7-QD/FD-S, θ evolves according to the slip law:

$$
\begin{equation*}
\frac{d \theta}{d t}=-\frac{V \theta}{D_{\mathrm{RS}}} \ln \left(\frac{V \theta}{D_{\mathrm{RS}}}\right), \quad(\mathrm{BP} 7-\mathrm{S}) \tag{14}
\end{equation*}
$$

where D_{RS} is the characteristic slip distance. The friction coefficient f is given by a regularized formulation:

$$
\begin{equation*}
f(V, \theta)=a \sinh ^{-1}\left[\frac{V}{2 V_{*}} \exp \left(\frac{f_{*}+b \ln \left(V_{*} \theta / D_{\mathrm{RS}}\right)}{a}\right)\right] \tag{15}
\end{equation*}
$$

with the reference friction coefficient f_{*} at a reference slip rate V_{*}, and rate-and-state direct effect and evolution parameters a and b, respectively.

For this benchmark, b is fixed as b_{0} and a varies throughout Ω_{f} in order to define the velocity-weakening/strengthening regions (see Figure 1) as follows:

$$
a\left(x_{2}, x_{3}\right)= \begin{cases}a_{0}, & \left(r \leq R_{\mathrm{vw}}\right) \tag{16}\\ a_{\max }, & \left(r>R_{\mathrm{vw}}\right)\end{cases}
$$

where $r=\sqrt{x_{2}^{2}+x_{3}^{2}}$.
Outside the domain Ω_{f} (i.e. $\left|x_{3}\right|>W_{\mathrm{f}}$ or $\left|x_{2}\right|>l_{\mathrm{f}}$) the fault creeps horizontally at an imposed constant slip rate, given by the interface conditions:

$$
\begin{align*}
& V_{2}\left(x_{2}, x_{3}, t\right)=V_{L}, \tag{17a}\\
& V_{3}\left(x_{2}, x_{3}, t\right)=0, \tag{17b}
\end{align*}
$$

where V_{L} is the imposed fault slip rate (equal to the plate rate V_{p} for this problem).

2.2 Boundary conditions

The whole-space solution for BP7-QD/FD-A/S requires conditions at infinity ($x_{1} \rightarrow \pm \infty$, $x_{2} \rightarrow \pm \infty, x_{3} \rightarrow \pm \infty$). For the quasi-dynamic problem BP7-QD-A/S we require that displacement changes (from rigid body translation), $\mathbf{u}-\mathbf{u}^{\text {rigid }}$, and thus stress changes $\Delta \sigma_{i j}$ vanish at infinity.

For the fully dynamic problem BP7-FD-A/S, we permit only outgoing waves through the Sommerfeld radiation condition at infinity (i.e. only solutions that scatter energy to infinity are permitted, no energy may be radiated into the source region from infinity) [1, 2].

The rigid body translation we specify as:

$$
\begin{align*}
& u_{1}^{ \pm \text {rigid }}(t)=0 \tag{18a}\\
& u_{2}^{ \pm \text {,rigid }}(t)= \pm V_{p} t / 2, \tag{18b}\\
& u_{3}^{ \pm \text {rigid }}(t)=0 \tag{18c}
\end{align*}
$$

where V_{p} is the plate rate.

2.2.1 Finite domain statement of problem

We also consider a finite domain statement of problems BP7-QD/FD-A/S considering motion in a finite homogeneous, isotropic domain Ω with boundary $\delta \Omega$ defined by:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega=[-500 \mathrm{~m}, 500 \mathrm{~m}] \times[-500 \mathrm{~m}, 500 \mathrm{~m}] \times[-500 \mathrm{~m}, 500 \mathrm{~m}]
$$

The finite domain problems require conditions along the domain boundary $\delta \Omega$ and we approximate the Sommerfeld radiation condition by imposing absorbing boundary conditions on perturbations from rigid body translation. There are a number of ways to do this; a suggestion (although not required) is as follows.

At the two boundaries $x_{1}= \pm 500 \mathrm{~m}$, we impose

$$
\begin{align*}
\dot{u}_{1}+Z_{p}^{-1}\left(\sigma_{1 j}-\sigma_{1 j}^{0}\right) n_{j} & =\dot{u}_{1}^{ \pm, \text {rigid }}(t), \tag{19a}\\
\dot{u}_{2}+Z_{s}^{-1}\left(\sigma_{2 j}-\sigma_{2 j}^{0}\right) & =\dot{u}_{2}^{ \pm, \text {rigid }}(t), \tag{19b}\\
\dot{u}_{3}+Z_{s}^{-1}\left(\sigma_{3 j}-\sigma_{3 j}^{0}\right) n_{j} & =\dot{u}_{3}^{ \pm, \text {rigid }}(t), \tag{19c}
\end{align*}
$$

where $Z_{p}=c_{p} \rho$ and $Z_{s}=c_{s} \rho$ are the longitudinal and shear impedances and vector n is the outward pointing normal at the exterior boundaries. At the two boundaries $x_{2}= \pm 500 \mathrm{~m}$,

$$
\begin{align*}
& \dot{u}_{1}+Z_{s}^{-1}\left(\sigma_{1 j}-\sigma_{1 j}^{0}\right) n_{j}=\dot{u}_{1}^{ \pm, \text {rigid }}(t), \tag{20a}\\
& \dot{u}_{2}+Z_{p}^{-1}\left(\sigma_{2 j}-\sigma_{2 j}^{0}\right) n_{j}=\dot{u}_{2}^{ \pm, \text {rigid }}(t), \tag{20b}\\
& \dot{u}_{3}+Z_{s}^{-1}\left(\sigma_{3 j}-\sigma_{3 j}^{0}\right) n_{j}=\dot{u}_{3}^{ \pm, \text {rigid }}(t), \tag{20c}
\end{align*}
$$

and at $x_{3}= \pm 500 \mathrm{~m}$,

$$
\begin{align*}
& \dot{u}_{1}+Z_{s}^{-1}\left(\sigma_{1 j}-\sigma_{1 j}^{0}\right) n_{j}=\dot{u}_{1}^{ \pm, \mathrm{rigid}}(t), \tag{21a}\\
& \dot{u}_{2}+Z_{s}^{-1}\left(\sigma_{2 j}-\sigma_{2 j}^{0}\right) n_{j}=\dot{u}_{2}^{ \pm, \mathrm{rigid}}(t), \tag{21b}\\
& \dot{u}_{3}+Z_{p}^{-1}\left(\sigma_{3 j}-\sigma_{3 j}^{0}\right) n_{j}=\dot{u}_{3}^{ \pm, \text {rigid }}(t) . \tag{21c}
\end{align*}
$$

Remark: Some modelers use a solution algorithm that involves switching between the dynamic and quasi-static problems. In this case, we recommend that modelers enforce the same boundary conditions in the quasi-static phase (i.e. (19)-(21), but if this is not possible, then we suggest using displacement conditions such that $u_{i}=u_{i}^{\text {rigid }}, \quad i=1,2,3$ (which follow from (19)-21) in the quasi-static limit $\left.c_{s}, c_{p} \rightarrow \infty\right)$.

3 Initial Conditions and Simulation Time

The initial state and reference shear traction on the fault is chosen so that the model can start with a uniform fault slip rate, given by:

$$
\mathbf{V}=\left[\begin{array}{l}
V_{\text {init }} \tag{22}\\
V_{\text {zero }}
\end{array}\right],
$$

where $V_{\text {zero }}$ is chosen as $10^{-20} \mathrm{~m} / \mathrm{s}$ to avoid infinite $\log \left(V_{3}\right)$ in data output, and:

$$
\begin{equation*}
\boldsymbol{\tau}^{0}=\tau^{0} \cdot \mathbf{V} / V \tag{23}
\end{equation*}
$$

The initial state variable is chosen at steady state with slip rate $V_{\text {init }}$ over the entire fault, namely:

$$
\begin{equation*}
\theta\left(x_{2}, x_{3}, 0\right)=D_{\mathrm{RS}} / V_{\text {init }} \tag{24}
\end{equation*}
$$

For quasi-dynamic problems BP7-QD-A/S, we must specify an initial value for slip, which we take to be zero, namely:

$$
\begin{equation*}
s_{j}\left(x_{2}, x_{3}, t\right)=0, \quad j=2,3 \tag{25}
\end{equation*}
$$

The scalar reference traction τ^{0} is chosen with respect to the steady-state stress:

$$
\begin{equation*}
\tau^{0}=\bar{\sigma} a \sinh ^{-1}\left[\frac{V_{\mathrm{init}}}{2 V_{*}} \exp \left(\frac{f_{*}+b \ln \left(V_{*} / V_{\mathrm{init}}\right)}{a}\right)\right]+\eta V_{\mathrm{init}} \tag{26}
\end{equation*}
$$

such that the actual shear stress on the fault is initially consistent with the steady-state shear resistance at the desired initial slip rate $V_{\text {init }}$.

For fully dynamic problems BP7-FD-A/S, initial values for displacements and velocities in the medium must be specified. We assume these are initially zero everywhere in the domain (i.e. we assume displacements are measured with respect to the prestressed equilibrium configuration), namely,

$$
\begin{equation*}
u_{j}\left(x_{1}, x_{2}, x_{3}, 0\right)=\dot{u}_{j}\left(x_{1}, x_{2}, x_{3}, 0\right)=0, \quad j=1,2,3 . \tag{27}
\end{equation*}
$$

The scalar reference shear traction τ^{0} is chosen as the steady-state stress:

$$
\begin{equation*}
\tau^{0}=\bar{\sigma} a \sinh ^{-1}\left[\frac{V_{\text {init }}}{2 V_{*}} \exp \left(\frac{f_{*}+b \ln \left(V_{*} / V_{\text {init }}\right)}{a}\right)\right] \tag{28}
\end{equation*}
$$

3.1 Nucleation procedure

In order to nucleate the first rupture, a horizontal shear traction perturbation (i.e. a perturbation to τ_{y}) is imposed starting at $t=0$:

$$
\Delta \boldsymbol{\tau}^{0}=\left[\begin{array}{c}
\Delta \tau^{0} \tag{29}\\
0
\end{array}\right]
$$

The perturbation smoothly grows in space and time from zero to its maximum amplitude $\Delta \tau_{0}$ over a finite time interval T and is confined to a finite region of the fault of radius $R_{\text {nuc }}$. The perturbation is radially symmetric, with radial distance away from the hypocenter $\left(y_{2}, y_{3}\right)$ along the fault given by $r=\sqrt{\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}$. The perturbation is mathematically smooth in time and space (i.e., the function and all derivatives are continuous). Specifically the perturbation is:

$$
\begin{equation*}
\Delta \tau^{0}\left(x_{2}, x_{3}, t\right)=\Delta \tau_{0} G_{1}\left(\sqrt{\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}}\right) G_{2}(t) \tag{30}
\end{equation*}
$$

where,

$$
G_{1}(r)= \begin{cases}\exp \left(\frac{r^{2}}{r^{2}-R_{\mathrm{nuc}}^{2}}\right), & r<R_{\mathrm{nuc}} \tag{31}\\ 0, & r \geq R_{\mathrm{nuc}}\end{cases}
$$

and,

$$
G_{2}(t)= \begin{cases}\exp \left(\frac{(t-T)^{2}}{t(t-2 T)}\right), & 0<t<T \tag{32}\\ 1, & t \geq T\end{cases}
$$

3.2 Simulation parameters

The problem stated above is solved over the time period $0 \leq t \leq t_{\mathrm{f}}$, where t_{f} is a specified final simulation time. All necessary parameter values for this benchmark problem are given in Table 1.

We have chosen model parameters in order to balance the need to resolve relevant physical length scales and computationally efficiency. At a rupture speed of 0^{+}, the quasi-static process zone, Λ_{0}, is expressed as:

$$
\begin{equation*}
\Lambda_{0}=C \frac{\mu D_{\mathrm{RS}}}{b \bar{\sigma}_{\mathrm{n}}} \tag{33}
\end{equation*}
$$

where C is a constant on the order of 1 . Another important length scale is the nucleation scale. An estimate of the length of the nucleation region h^{*} in 3D using the aging law is:

$$
\begin{equation*}
h^{*}=\frac{\pi}{2} \frac{\mu^{\prime} b D_{\mathrm{RS}}}{(b-a)^{2} \bar{\sigma}_{\mathrm{n}}}, \tag{34}
\end{equation*}
$$

where $\mu^{\prime}=\mu$ for mode III and $\mu^{\prime}=\mu /(1-\nu)$ for mode II. With the provided parameter values, the process zone Λ_{0} and h^{*} are uniform over the VW region.

We specify two different fault models for each problem BP7-QD/FD-A/S considering two sets of frictional parameters with $D_{\mathrm{RS}}=0.50 \mathrm{~mm}$ (version 1) and $D_{\mathrm{RS}}=0.53 \mathrm{~mm}$ (version 2). The smallest value for the estimated nucleation size given the benchmark parameters is $h^{*} \approx 262 \mathrm{~m}$ (version 1) in mode III, and the smallest value for the estimated quasi-static process zone is $\Lambda_{0} \approx 88 \mathrm{~m}$.

3.3 Benchmark Tips

We suggest using a cell size of $\Delta z=10 \mathrm{~m}$ for the simulations; results from simulations using smaller, if feasible, or larger cell sizes are welcome. For methods that use multiple degrees of freedom along cell edges/faces, please take $\Delta z=$ edge length / number of unique degrees of freedom. For instance, for a high-order finite element method, if Δh is the edge length and N the polynomial order then $\Delta z=\Delta h / N$.

Modeling groups may submit results intended for either or both the finite or infinite domain statements of the benchmark problems. Groups using numerical methods that truncate the whole-space solution for the infinite domain problem (i.e. truncate the whole-space in x_{1}, x_{2}, and x_{3} directions when defining the computational domain) may find that the choice of numerical boundary conditions change the simulation results at least quantitatively, or even qualitatively. We suggest extending these boundaries until you see results appear independent of the computational domain size. Preliminary comparisons of BP7 suggest that a larger model domain Ω_{s} is needed compared to the finite domain problem in order to better approximate the infinite whole-space solution, e.g.

$$
\Omega_{s} \geq[-1280 \mathrm{~m}, 1280 \mathrm{~m}] \times[-1280 \mathrm{~m}, 1280 \mathrm{~m}] \times[-1280 \mathrm{~m}, 1280 \mathrm{~m}]
$$

Modeling groups may upload results for several domain sizes and spatial resolutions, however to simplify group comparisons we request that each person submit results from at most two different spatial resolutions and two different computational domain sizes.

Table 1: Parameter values used in this benchmark problem

Parameter	Definition	Value, Units
ρ	density	$2670 \mathrm{~kg} / \mathrm{m}^{3}$
c_{s}	shear wave speed	$3.464 \mathrm{~km} / \mathrm{s}$
μ	shear modulus	32.04 GPa
ν	Poisson's ratio	0.25
a_{0}	rate-and-state direct effect parameter	0.004
$a_{\max }$	rate-and-state direct effect parameter	0.016
b_{0}	rate-and-state evolution effect parameter	0.01
$\bar{\sigma}$	effective normal stress	25 MPa
D_{RS}	characteristic slip distance	$0.50 / 0.53 \mathrm{~mm}$
V_{p}	plate rate	$10^{-9} \mathrm{~m} / \mathrm{s}$
V_{L}	imposed fault slip rate	$10^{-9} \mathrm{~m} / \mathrm{s}$
$V_{\text {init }}$	initial slip rate	$10^{-9} \mathrm{~m} / \mathrm{s}$
V_{*}	reference slip rate	$10^{-6} \mathrm{~m} / \mathrm{s}$
f_{*}	reference friction coefficient	0.6
R_{vw}	radius of uniform VW region	200 m
W_{f}	half-width of rate-and-state fault	400 m
l_{f}	half-length of rate-and-state fault	400 m
Δz	suggested cell size	10 m
t_{f}	final simulation time	10 years
$\Delta \tau_{0}$	max amplitude of nucleation stress perturbation	1.75 MPa
$R_{\text {nuc }}$	radius of the nucleation stress perturbation	150 m
T	duration of the nucleation stress perturbation	1 s
$\left(y_{2}, y_{3}\right)$	hypocenter for nucleation stress perturbation	$(-50 \mathrm{~m},-50 \mathrm{~m})$

4 Benchmark Output

We request five types of data output, if available, for this benchmark:
(1) On-fault time series (section 4.1)
(2) Off-fault time series (section 4.2)
(3) Source parameter time series (section 4.3)
(4) Earthquake catalog (section 4.4)
(5) Slip and stress evolution profile (section 4.5)
(6) Rupture time contour for first event (section 4.6)

The location information relevant to these outputs are shown in Fig. 2. Data files for (1), (2), (3) and (6) are uploaded to the SCEC code verification web server (section 5). Information on how to share output (4) and (5) is detailed in sections 4.4 and 4.5 .

Figure 2: Observation points, lines, and region for model outputs. Local time series is output at (top) on-fault and (bottom) off-fault points (red). Slip and stress evolution are output along two cross-section lines (orange). The region outlined in red is used for estimating source parameter time series and rupture time contour. Dashed rectangles indicate fault areas with different frictional properties, shown in Figure 1.

4.1 On-fault Time Series Output

You need to upload on-fault $\left(x_{1}=0\right)$ time series files, which give slip components s_{2} and s_{3}, base $10 \log$ of the components of slip rate V_{2} and V_{3}, base $10 \log$ of the state variable (i.e. $\left.\log _{10}(\theta)\right)$, and shear stress components τ and τ_{z}, for each on-fault station at representative time steps. We define the simulation periods as either aseismic (when $\max (V)<10^{-3} \mathrm{~m} / \mathrm{s}$, where $\max (V)$ is the maximum of the norm of the slip velocity vector over the entire fault) or seismic (when $\max (V) \geq 10^{-3} \mathrm{~m} / \mathrm{s}$). When outputting modeling results, use larger time intervals (e.g., ~ 1 week) during aseismic periods and smaller time intervals (e.g., $\sim 0.05 \mathrm{~s}$) during seismic periods. More variable time steps are OK. Please keep the total number of time steps in the data file on the order of $10^{4}-10^{5}$.

Time series data is supplied as ASCII files, one file for each station. There are 13 observational points on the fault (including 5 at the surface fault trace), as follows:

1. fltst_strk+000dp+000: $x_{2}=0 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
2. fltst_strk-100dp+000: $x_{2}=-100 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
3. fltst_strk+000dp+100: $x_{2}=0 \mathrm{~m}, x_{3}=100 \mathrm{~m}$;
4. fltst_strk+100dp+000: $x_{2}=100 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
5. fltst_strk+000dp-100: $x_{2}=0 \mathrm{~m}, x_{3}=-100 \mathrm{~m}$;
6. fltst_strk-100dp-100: $x_{2}=-100 \mathrm{~m}, x_{3}=-100 \mathrm{~m}$;
7. fltst_strk-100dp+100: $x_{2}=-100 \mathrm{~m}, x_{3}=100 \mathrm{~m}$;
8. fltst_strk+100dp-100: $x_{2}=100 \mathrm{~m}, x_{3}=-100 \mathrm{~m}$;
9. fltst_strk+100dp+100: $x_{2}=100 \mathrm{~m}, x_{3}=100 \mathrm{~m}$;
10. fltst_strk-300dp+000: $x_{2}=-300 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
11. fltst_strk+000dp+300: $x_{2}=0 \mathrm{~m}, x_{3}=300 \mathrm{~m}$;
12. fltst_strk+300dp+000: $x_{2}=300 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
13. fltst_strk+000dp-300: $x_{2}=0 \mathrm{~m}, x_{3}=-300 \mathrm{~m}$.

Each time series has 8 data fields, as follows.

Field Name	Description, Units and Sign Convention
t	Time (s)
slip_2	Horizontal component of slip (m). Positive for right-lateral motion.
slip_3	Vertical component of slip (m). Positive for + side moving downward.
slip_rate_2	$\log _{10}$ of the amplitude of the horizontal component of slip-rate $\left(\log _{10} \mathrm{~m} / \mathrm{s}\right)$, which is positive for right-lateral motion.
slip_rate_3	$\log _{10}$ of the amplitude of the vertical component of slip-rate $\left(\log _{10} \mathrm{~m} / \mathrm{s}\right)$, which is positive for + side moving downward.
shear_stress_2	Horizontal component of shear stress (MPa), which is positive for shear stress that tends to cause right-lateral motion.
shear_stress_3	Vertical component of shear stress (MPa), which is positive for shear stress that tends to cause + side to move downward.
state	$\log _{10}$ of state variable ($\left.\log _{10} \mathrm{~s}\right)$.

The on-fault time series file consists of three sections, as follows:

File Section	Description
File Header	A series of lines, each beginning with a \# symbol, that give the following information: - Benchmark problem (e.g. BP7-QD-A) - Code name - Code version (optional) - Modeler - Date - Node spacing or element size - Station location - Minimum time step (optional) - Maximum time step (optional) - Number of time steps in file (optional) - Anything else you think is relevant (optional) - Descriptions of data columns (8 lines) - Anything else you think is relevant
Field List	A single line, which lists the names of the 8 data fields, in column order, separated by spaces. It should be: t slip_2 slip_3 slip_rate_2 slip_rate_3 shear_stress_2 shear_stress_3 state (all on one line). The server examines this line to check that your file contains the correct data fields.
Time History	A series of lines. Each line contains 8 numbers, which give the data values for a single time step. The lines must appear in order of increasing time. Make sure to use double-precision when saving all fields. C/C++ users: We recommend using 21.13E or 21.13 e floating-point format for the time field and 14.6 E or 14.6 e format for all other data fields. Fortran users: We recommend using E22.14 or 1PE22.13 floating-point format for the time field and E15.7 or 1PE15.6 format for other data fields. The server accepts most common numeric formats. If the server cannot understand your file, you will see an error message when you attempt to upload the file.

Here is an example of an on-fault time-series file, with invented data.

```
# This is the file header:
# problem=SEAS Benchmark BP7-QD-A
# code=MYcode
# version=1.0
# modeler=A.Modeler
# date=2021/08/01
# element_size=10 m
# location= on fault, Okm along strike, Okm depth
# minimum_time_step=9.6225e-04
# maximum_time_step=5.0636e+04
# num_time_steps=45521
# Column #1 = Time (s)
# Column #2 = Slip_2 (m)
# Column #3 = Slip_3 (m)
# Column #4 = Slip_rate_2 (log10 m/s)
# Column #5 = Slip_rate_3 (log10 m/s)
# Column #6 = Shear_stress_2 (MPa)
```

```
# Column #7 = Shear_stress_3 (MPa)
# Column #8 = State (log10 s)
# The line below lists the names of the data fields
t slip_2 slip_3 slip_rate_2 slip_rate_3 shear_stress_2 shear_stress_3 state
# Here is the time-series data.
0.000000E+00 0.0000000E+00 0.0000000E+00 -2.0000000E +00 -2.0000000E+01
9.622786E-04 9.5383231E-06 2.3908243E-10 -2.0072593E+00 -6.2945862E+00 ...
2.886836E-03 2.6726014E-05 3.1342133E-09 -2.0862801E+00 -5.5839683E+00 ...
4.811393E-03 4.1027878E-05 9.2580681E-09 -2.1704691E+00 -5.4211285E+00 ...
# ... and so on.
```


4.2 Off-fault Time Series Output

You need to upload time series files for off-fault stations, which give three components of displacement u_{1}, u_{2}, and u_{3}, and of velocity v_{1}, v_{2}, and v_{3} (not base $10 \log$), for each station at representative time steps. Please use the same time steps for outputting the on-fault and off-fault time series.

Time series data is supplied as ASCII files, one file for each station. There are six off-fault observational points, as follows:

1. blkst_strk+000fn+200dp+000: $x_{2}=0 \mathrm{~m}, x_{1}=200 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
2. blkst_strk+000fn+400dp+000: $x_{2}=0 \mathrm{~m}, x_{1}=400 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
3. blkst_strk-300fn+400dp+000: $x_{2}=-300 \mathrm{~m}, x_{1}=400 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
4. blkst_strk+000fn+400dp+300: $x_{2}=0 \mathrm{~m}, x_{1}=400 \mathrm{~m}, x_{3}=300 \mathrm{~m}$;
5. blkst_strk+300fn+400dp+000: $x_{2}=300 \mathrm{~m}, x_{1}=400 \mathrm{~m}, x_{3}=0 \mathrm{~m}$;
6. blkst_strk+000fn+400dp-300: $x_{2}=0 \mathrm{~m}, x_{1}=400 \mathrm{~m}, x_{3}=-300 \mathrm{~m}$;

Each time series has 7 data fields, as follows.

Field Name	Description, Units and Sign Convention
t	Time (s)
disp_1	Fault-perpendicular $\left(x_{1}\right)$ component of displacement (m). Positive for extensional motion.
disp_2	Fault-parallel (x_{2}) component of displacement (m). Positive for right-lateral motion.
disp_3	Vertical (x_{3}) component of displacement (m). Positive for + side moving downward.
vel_1	x_{1} component of velocity (m / s), which is positive for extensional motion.
vel_2	x_{2} component of velocity (m / s), which is positive for right-lateral motion.
vel_3	x_{3} component of velocity (m / s), which is positive for + side moving downward.

The off-fault time series file consists of three sections, as follows:

File Section	Description
File Header	A series of lines, each beginning with a \# symbol, that give the following information: - Benchmark problem (BP7-QD-A) - Code name - Code version (optional) - Modeler - Date - Node spacing or element size - Station location - Minimum time step (optional) - Maximum time step (optional) - Number of time steps in file (optional) - Anything else you think is relevant (optional) - Descriptions of data columns (7 lines) - Anything else you think is relevant
Field List	A single line, which lists the names of the 7 data fields, in column order, separated by spaces. It should be: t disp_1 disp_2 disp_3 vel_1 vel_2 vel_3 (all on one line). The server examines this line to check that your file contains the correct data fields.
Time History	A series of lines. Each line contains 8 numbers, which give the data values for a single time step. The lines must appear in order of increasing time. Make sure to use double-precision when saving all fields. C/C++ users: We recommend using 21.13E or 21.13 e floating-point format for the time and velocity fields, and 14.6 E or 14.6 e format for all other data fields. Fortran users: We recommend using E22.14 or 1PE22.13 floating-point format for the time and velocity fields, and E15.7 or 1PE15.6 format for other data fields. The server accepts most common numeric formats. If the server cannot understand your file, you will see an error message when you attempt to upload the file.

Here is an example of an on-fault time-series file, with invented data.

```
# This is the file header:
# problem=SEAS Benchmark BP7-QD-A
# code=MYcode
# version=1.0
# modeler=A.Modeler
# date=2021/08/01
# element_size=10 m
# location= off fault, }\mp@subsup{x}{2}{}=\mp@subsup{x}{3}{}=0\textrm{m},\mp@subsup{x}{1}{}=400\textrm{m
# minimum_time_step=9.6225e-04
# maximum_time_step=5.0636e+04
# num_time_steps=45521
# Column #1 = Time (s)
# Column #2 = Displacement_1 (m)
# Column #3 = Displacement_2 (m)
# Column #4 = Displacement_3 (m)
# Column #5 = Velocity_1 (m/s)
# Column #6 = Velocity_2 (m/s)
# Column #7 = Velocity_3 (m/s)
```

```
# The line below lists the names of the data fields
t disp_1 disp_2 disp_3 vel_1 vel_2 vel_3
# Here is the time-series data.
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.000000E-20 1.000000E-9 1.000000E-20
9.622786E-04 0.000000E+00 0.000000E+00 0.000000E+00 1.000000E-20 1.000000E-9 1.000000E-20
2.886836E-03 0.000000E+00 0.000000E+00 0.000000E+00 1.000000E-20 1.000000E-9 1.000000E-20
# ... and so on.
```


4.3 Source Parameter Time Series Output

You need to upload a file named global.dat, which includes time series of three global source variables, including the maximum amplitude of slip rates

$$
V_{\max }=\max _{\left(x_{2}, x_{3}\right) \in A} V,
$$

the moment rate

$$
\dot{M}=\int_{A} \mu V d A
$$

for the domain A that surrounds the velocity-weakening patch plus half of the radius of the velocity-weakening patch in every direction, i.e. $\sqrt{x_{2}^{2}+x_{3}^{2}} \leq 1.5 R_{\mathrm{vw}}$ (shown in Fig. 2), as well as the moment rate for the velocity-weakening patch

$$
\dot{M}_{\mathrm{vw}}=\int_{A_{\mathrm{vw}}} \mu V d A_{\mathrm{vw}}
$$

where A_{vw} is the domain $\sqrt{x_{2}^{2}+x_{3}^{2}} \leq R_{\mathrm{vw}}$. Upload data corresponding to the same time steps you used for section 4.1.

Here is an example of a source parameter time-series file, with invented data.
\# This is the file header:
\# problem=SEAS Benchmark BP7-QD-A
\# code=MYcode
\# version=1.0
\# modeler=A.Modeler
\# date=2021/08/01
\# element_size=10 m
\# location= 1.5 times VW patch radius
\# minimum_time_step=9.6225e-04
\# maximum_time_step=5.0636e+04
\# num_time_steps=45521
\# Column \#1 = Time (s)
\# Column \#2 = Max_slip_rate ($\log 10 \mathrm{~m} / \mathrm{s}$)
\# Column \#3 = Moment_rate ($\mathrm{N}-\mathrm{m} / \mathrm{s}$)
\# Column \#4 = Moment_rate of VW patch (N-m/s)
\# The line below lists the names of the data fields

```
t max_slip_rate moment_rate moment_rate_vw
# Here is the time-series data.
0.000000000E+00 -2.0000000E+00 1.0124054E+13 1.0124054E+13
9.622786759E-04 -1.9829841E+00 1.0381976E+13 1.0381976E+13
2.886836027E-03 -1.9527641E+00 1.0731650E+13 1.0731650E+13
4.811393379E-03 -1.9285083E+00 1.1022296E+13 1.1022296E+13
# ... and so on.
```


4.4 Earthquake Catalog Output

The earthquake catalog output file with a name catalog.dat is a single ASCII file that includes characteristics of all seismic events in the simulation. We define an event to start when the maximum slip rate exceeds $10^{-3} \mathrm{~m} / \mathrm{s}$, and to be over when maximum slip rate dips below $10^{-3} \mathrm{~m} / \mathrm{s}$ for a time duration of at least 10 seconds (to avoid inaccurate estimate of event termination in the presence of slip rate fluctuation at the end of rupture). For each earthquake in the entire simulation period, the file contains the event number, the event initiation time, event termination time, the total rupture area R, average stress in the rupture area $\tau_{\text {avg }}$ at the beginning and end of the event (so stress drops can be computed from the two values), and the average coseismic slip in the rupture area $s_{\text {avg }}$.

We consider the rupture domain Ω_{R} as those locations on the fault where slip rates have exceeded $10^{-3} \mathrm{~m} / \mathrm{s}$ at any time during the event, with $R=\left|\Omega_{R}\right|$ being the total rupture area. We define $\tau_{\text {avg }}$ as the amplitude of spatially averaged stress vector $\boldsymbol{\tau}$ within the rupture area:

$$
\tau_{\mathrm{avg}}=\frac{1}{R}\left|\int_{\Omega_{R}} \boldsymbol{\tau} d \Omega_{R}\right| .
$$

Similarly, we define $s_{\text {avg }}$ as the amplitude of spatially averaged slip vector s within the rupture domain:

$$
s_{\mathrm{avg}}=\frac{1}{R}\left|\int_{\Omega_{R}} \boldsymbol{s} d \Omega_{R}\right| .
$$

NOTE: Please upload this data to a Dropbox folder that will be shared with you (or send request to valerelambert@ucsc.edu). Please ensure that the file is ~ 10 s of MBs or less.

The data file has 7 data fields, as follows:

Field Name	Description, Units and Sign Convention
event_no	Event number.
t_start	Time event starts (s).
t_end	Time event ends (s).
rup_area	Rupture area $\left(\mathrm{m}^{2}\right)$.
avg_stress_start	Spatial average of stress within rupture area at t_start (MPa).
avg_stress_end	Spatial average of stress within rupture area at t_end (MPa).
avg_slip	Average slip in rupture area (m).

The data output consists of three sections, as follows:

File Section	Description
File Header	A series of lines, each beginning with a \# symbol, that give the following information: - Benchmark problem (BP7-QD-A) - Modeler - Date - Code - Code version (if desired) - Node spacing or element size - Descriptions of data fields (1 line) - Anything else you think is relevant (e.g. computational domain size)
Field List	One line listing the 7 data fields on one line, separated by spaces. It should be: event_no t_start t_end rup_area avg_stress_start avg_stress_end avg_slip (all on one line).
Catalog	A series of lines. Make sure to use double-precision when saving all fields. C/C++ users: We recommend using 21.13E or 21.13e floating-point format for the time field and 14.6E or 14.6e format for all other data fields. Fortran users: We recommend using E22.14 or 1PE22.13 floating-point for- mat for the time field and E15.7 or 1PE15.6 format for other data fields.

Here is an example of a catalog file, with invented data.

```
# This is the file header:
# problem=SEAS Benchmark BP7-QD-A
# author=A.Modeler
# date=2020/08/01
# code=MyCode
# code_version=1.0
# element_size=10 m
# Column #1 = Event number
# Column #2 = Event start time (s)
# Column #3 = Event end time (s)
# Column #6 = Rupture area (m^2)
# Column #7 = Stress avg at start time (MPa)
# Column #8 = Stress avg at end time (MPa)
# Column #9 = Avg slip in rupture area (m)
# Computational domain size: 1000m x 1000 m
# The line below lists the names of the data fields
event_no t_start t_end rup_area avg_stress_start avg_stress_end avg_slip
# Here are the data
1 9.62278675904542E-04 7.91955350269437E-01 1.4370000E+05 ... 1.4290000E-02
2 2.82816197959969E+07 2.82816211499232E+07 1.3540000E+05 ... 7.9080000E-03
3 5.62723530302155E+07 5.62723543802928E+07 1.3520000E+05 ... 8.0210000E-03
# ... and so on.
```


4.5 Slip and Stress Evolution Output

The slip and stress evolution output files with the names

```
slip_2_depth.dat
slip_2_strike.dat
stress_2_depth.dat
stress_2_strike.dat
slip_3_depth.dat
slip_3_strike.dat
stress_3_depth.dat
stress_3_strike.dat
```

are 8 ASCII files that record the spatial distribution of slip and stress (both horizontal and vertical components) on a subset of fault nodes at one-dimensional cross sections (either a specified distance along strike OR along depth), at representative time steps during the aseismic and seismic phases of the simulation. Data can be saved using representative time intervals of ~ 1 week and $\sim 0.05 \mathrm{~s}$ for results in aseismic and seismic phases, respectively, or with variable time steps. Either way, data will be interpolated to plot slip every 1 week during the aseismic phase, and every 0.05 s during the coseismic phase.

The data should include nodes with a spacing of $\sim 10 \mathrm{~m}$ (or larger for simulations with larger cells) along depth ($-400 \mathrm{~m} \leq x_{3} \leq 400 \mathrm{~m}$) or along strike ($-400 \mathrm{~m} \leq x_{2} \leq 400 \mathrm{~m}$). The files should also contain the time series of maximum slip rate amplitude (taken over the entire fault), so that we can precisely differentiate aseismic and seismic phases. We request a total of 8 data files containing slip and stress data at two one-dimensional cross sections: one along-dip profile at $x_{2}=0 \mathrm{~m}$ and one along-strike profile at $x_{3}=0 \mathrm{~m}$ (see the orange lines in Figure 2).

NOTE: Please upload this data to a Dropbox folder that will be shared with you (or send a request to valerelambert@ucsc.edu).

Each data file has 4 data fields, as follows:

Field Name	Description, Units and Sign Convention		
x2 OR x3	Strike (m) at $\sim 10 \mathrm{~m}$ increments from -400 m to 400 m OR Depth (m) at $\sim 10 \mathrm{~m}$ increments from -400 m to 400 m		
t	Time (s). Nonuniform time steps. The $\log _{10}$ of maximum amplitude of slip-rate (taken over the entire max_slip_rate slip_2 OR slip_3 OR $\left(\log _{10} \mathrm{~m} / \mathrm{s}\right)$.		
stress_2 OR stress_3		\quad	Horizontal OR vertical component of slip (m) (positive for right-lateral
:---			
motion OR for + side moving downward, respectively) OR horizontal			
OR vertical component of stress (in MPa).			

The data output consists of three sections, as follows:

File Section	Description
File Header	A series of lines, each beginning with a \# symbol, that give the following information: - Benchmark problem (e.g. BP7-QD-A) - Modeler - Date - Code - Code version (if desired) - Node spacing or element size - Descriptions of data fields (4 lines) - Anything else you think is relevant (e.g. computational domain size)
Field List	Four lines. The first line lists either x_{2} OR x_{3}. The next two lines lists the time steps and max slip rate (respectively). The last line lists which component of slip or stress. It should be: x2 OR x3 t max_slip_rate slip_2 OR slip_3 OR stress_2 OR stress_3
Slip History	A series of lines that form a 2-dimensional array of rows and columns. The first row/line lists the numbers 0, 0 (to maintain a consistent array size), followed by the spatial nodes with increasing distance along strike OR depth as you go across the row. Starting from the second row/line, each row/line contains time, maximum slip rate, and slip OR stress at all nodes at the time. These lines
appear in order of increasing time (from top to bottom) and slip OR stress is	
recorded with increasing distance along strike or depth (from left to right).	
Make sure to use double-precision when saving all fields.	
C/C++ users: We recommend using 21.13E or 21.13e floating-point format	
for the time field and 14.6E or 14.6e format for all other data fields.	
Fortran users: We recommend using E22.14 or 1PE22.13 floating-point for-	
mat for the time field and E15.7 or 1PE15.6 format for other data fields.	

Note that x_{2} or x_{3} should appear in the first row, preceded by two zero numbers, for nodes with a spacing of $\sim 10 \mathrm{~m}$. Time and maximum slip rate should appear as two single columns that start on the second row, with time increasing as you go down. Slip or stress history (the remaining block) is represented by a two-dimensional array with time increasing as you go down the rows/lines, and either x_{2} or x_{3} increasing as you go across the columns (~ 81 and 41 columns, respectively). For example, the output in slip_2_strike.dat is a two-dimensional matrix of the form:

$$
\left[\begin{array}{ccc}
0 & 0 & x_{2} \\
T & \max (V) & \text { slip }
\end{array}\right]
$$

The matrix should be of size $\left(N_{\mathrm{t}}+1, \sim 83\right)$, where N_{t} is the total number of time steps. This means that you output slip at selected nodes at one time step and move on to the next time step. (To keep the file on the order of 10 s of $\mathrm{MB}, N_{\mathrm{t}}$ should be on the order of 10,000).

Here is an example of a slip-evolution file for slip_2_strike.dat, with invented data.
\# This is the file header:
\# problem=SEAS Benchmark BP7-QD-A
\# author=A.Modeler

```
# date=2019/12/01
# code=MyCode
# code_version=1.0
# element_size=10 m
# Row #1 = Strike (m) with two zeros first
# Column #1 = Time (s)
# Column #2 = Max slip rate (log10 m/s)
# Columns #3-83 = Horizontal slip along depth (Slip_2) (m)
# Computational domain size: -400m < x2 < 400m, -400m < x3 < 400m
# The line below lists the names of the data fields
x2
t
max_slip_rate
slip_2
# Here are the data
0.0000000E +00 0.0000000E+00 -4.00000E +02 -3.900000E+02 ... 4.000000 E+02
0.0000000E+00 -2.0000000E+00 0.000000E +00 0.0000000E+00 ... 0.000000E +00
9.6227867E-04 -1.9829841E+00 9.622786E-13 9.6227873E-13 ... 9.622786E-13
1.1547344E-02 -1.8217367E+00 1.154730E-11 1.1547382E-11 ... 1.154730E-11
2.1170130E-02 -1.6756341E+00 2.117003E-11 2.1170211E-11 ... 2.117003E-11
```


4.6 Rupture Time Contour Output

The rupture time contour output with a name rupture.dat is a single ASCII files that record the spatial distribution of arrival time of coseismic rupture front for the 1st earthquake in the simulation. We request the rupture time contour within a larger region that includes the frictional domain, $\left(\left|x_{2}\right| \leq l / 2 \cap\left(\left|x_{3}\right| \leq W_{f} / 2\right)\right.$ (shown in Fig. 2). At each node, the rupture time value is chosen as the first time instance when local slip rate amplitude reaches $1 \mathrm{~mm} / \mathrm{s}$. This data needs to be uploaded to the web server.

Each data file has 3 data fields, as follows:

Field Name	Description, Units and Sign Convention
x2	Distance along strike (m). Positive means a location to the right of the origin. The values range from -400 m to 400 m. x3
t	Distance down-dip (m). Positive means a location below the origin. The values range from -400 m to 400 m.
Rupture time (s). This is the time at which slip rate first reaches a value	
greater than $1 \mathrm{~mm} / \mathrm{s}$. If this node never ruptures, use the value $1.0 \mathrm{E}+09$.	

The data output consists of three sections, as follows:

File Section	Description
File Header	A series of lines, each beginning with a \# symbol, that give he following infor- mation: - Benchmark problem (BP7-QD-A) - Modeler - Date - Code - Code version (if desired) - Node spacing or element size - Descriptions of data fields (1 line) - Anything else you think is relevant (e.g. computational domain size)
Field List	A single line, which lists the names of the 3 data fields on one line, separated by spaces. It should be: x2 x3 t (on one line).
Rupture History	A series of lines. Each line contains three numbers, which give the (x2,x3) coordinates of a node on the fault surface, and the time t at which that node ruptures. Make sure to use double-precision when saving all fields. C/C++ users: We recommend using 21.13E or 21.13e floating-point format. Fortran users: We recommend using E22.14 or 1PE22.13 floating-point for- mat. If a node never ruptures, the time should be given as 1.0E+09.

Note: The nodes may appear in any order. The nodes do not have to form a rectangular grid, or any other regular pattern
Note: When you upload a file, the server constructs the Delaunay triangulation of your nodes. Then, it uses the Delaunay triangulation to interpolate the rupture times over the entire fault surface. Finally, it uses the interpolated rupture times to draw a series of contour curves at intervals of 0.5 seconds.

Here is an example of a rupture time file, with invented data.

```
# This is the file header:
# problem=SEAS Benchmark BP7-QD-A
# author=A.Modeler
# date=2021/08/01
# code=MyCode
# code_version=1.0
# element_size=10 m
# Column #1 = x2 (m)
# Column #2 = x3 (m)
# Column #3 = time (s)
# Computational domain size: }1000\textrm{m}\mathrm{ x 1000 m
# The line below lists the names of the data fields
x2 x3 t
# Here are the data
-4.000000E+02 4.00000E+02 1.000000000E+09
-3.900000E+02 4.00000E+02 1.000000000E+09
```

```
-3.800000E+02 4.00000E+02 1.000000000E+09
-3.700000E+02 4.00000E+02 1.000000000E+09
-3.600000E+02 4.00000E+02 1.000000000E+09
# ... and so on.
```


5 Using the Web Server

The web server lets you upload your modeling results (section 4). Once uploaded, you and other modelers can view the data in various ways.

5.1 Logging in and Selecting a Problem

To \log in, start your web browser and go to the home page at:
https://strike.scec.org/cvws/cgi-bin/seas.cgi
Click on "Upload Files," and then log in using your user name and password. Remember that passwords are case-sensitive. You are then presented with a list of code validation problems. Find the problem you want, and click the "Select" button. You will then see a list of files for the problem.

5.2 Navigating the Site

You navigate through the site by clicking buttons on the web pages. Avoid using your browser's Back or Forward buttons. If you use the Back or Forward buttons, you may get error messages from your browser.

5.3 Uploading Files

To upload a file, do the following steps:

- Find the file you want to upload, and click "Select." The server displays a page for you to upload the file.
- Select the data file on your computer. The exact method for file selection varies depending on operating system and web browser.
- Click on "Click Once to Upload." The file you selected is uploaded to the server.

When you upload a file, the web server immediately checks for correct formatting. There are three possible results:

- If the file is correctly formatted, the server displays a page noting the successful upload.
- If the file contains errors, the server displays an error log. The error log lists the errors that were detected in the file, each identified as specifically as possible.
- If the file is correctly formatted, but is questionable in some way (for example, a missing time step), then the server displays a warning log, which describes the problem.

When uploading time series files, the website may issue a warning that the time series cannot be filtered. Modelers should ignore this warning. After uploading a file, the file list shows the date and time that you uploaded the file. Remember that any file you upload will be visible to anyone who has access to the web site.

Additional help is available by clicking the "Help" link in the upper right corner of the webpage. Modelers who want to upload multiple versions of the benchmark (for example, using different element sizes), can do so using the "Change Version" feature of the website, which is described in the help screens. Direct further questions to Michael Barall.

5.4 Graphing, Viewing, and Deleting Files

After uploading a file, additional functions become available. These functions let you graph, view, or delete the uploaded file.

Graphing: To graph a file, find the file you want and click "Graph." For a time-series file, the server displays graphs of all the data fields in the file. At the bottom of each graph page, there is a box you can use to adjust graphing preferences. Graphing a file is a good way to check that the server is interpreting your data as you intended.

Viewing: To view the text of a file, find the file you want and click "View."
Deleting: To delete a file from the server, find the file you want and click "Delete." The server displays a page asking you to confirm the deletion.

References

[1] A. C. Eringen and E. S. Suhubi. Elastodynamics (vol. II - lineary theory). Academic Press, 1975.
[2] M. Bonnet. Boundary Integral Equation Methods for Solids and Fluids. Wiley, 1999.

