The effect of shear heating on the earthquake cycle

KALI ALLISON

4/24/2018

What does the deep root of a fault look like?

(diagrams show a vertical strike-slip fault for simplicity)

Model: 2D earthquake cycle simulation of a strike-slip fault

Model: 2D earthquake cycle simulation of a strike-slip fault

Governing equations

quasi-dynamic momentum balance

Hooke's law

$$\begin{aligned} \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} &= 0\\ \sigma_{ij} &= \mu \left(\frac{\partial u}{\partial x_i} - \gamma_{ij}^V \right) \end{aligned}$$

Power-law for dislocation creep

$$\dot{\gamma}_{ij}^{V} = \eta_{\text{eff}}^{-1} \sigma_{ij}$$
$$\eta_{\text{eff}} = A e^{-B/T} \bar{\tau}^{n-1}$$

Fault boundary conditions

$$au=\sigma_{xy}(0,z)-\eta_{
m rad}V/2=f(\psi,V)\sigma_N$$
 $\dot{\psi}=G(\psi,V)$ aging law $\delta=2u(0,z)$

force balance (with radiation damping)

The energy equation

$$\frac{\partial T}{\partial t} = \alpha_{th} \nabla^2 T + \frac{1}{\rho c} (Q_{rad} + Q_{fric} + Q_{visc})$$

 $\alpha_{th} = 1 \text{ mm}^2/\text{s}$ thermal diffusivity

Q_{rad} radioactive heat generation

$$Q_{fric} = au V \left(rac{1}{\sqrt{2\pi}w} e^{-y^2/2w^2}
ight)$$
 frictional shear heating

 $Q_{visc} = \bar{\tau} \dot{\bar{\gamma}}^V$ viscous shear heating

Shear heating

frictional and viscous dissipation generate

heat

viscous strain rates and stresses change

= $\eta_{\mathrm{eff}}^{-1} \sigma_{ij}$

 $\partial \gamma^{\scriptscriptstyle V}_{ij}$

increasing temperature decreases the effective viscosity

$$\eta_{\text{eff}} = e^{B/T} A^{-1} / (\bar{\tau}^{n-1})$$

How does shear heating impact shear stress?

assuming hydrostatic pore pressure

How does shear heating impact shear stress?

Resulting thermal anomaly

assuming hydrostatic pore pressure

Increasing pore pressure moves the brittleductile transition deeper.

increasing pore pressure

Surface heat flux

Data (red dots) from Takeuchi and Fialko (2012)

Higher pore pressure leads to a narrower shear zone beneath the fault.

increasing pore pressure

recurrence interval: 263 years nucleation depth: 13.5 km down-dip limit of eq. slip: 17.8 km

recurrence interval: 260 years nucleation depth: 13.5 km down-dip limit of eq. slip: 16.4 km

> red: contoured every 1 s blue: contoured every 10 years

Temperature change resulting from heat generated during coseismic slip.

w = 1 m

Decreasing frictional shear zone size increases the maximum temperature change

