SEAS Benchmark BP1 Results

Brittany Erickson and Junle Jiang

April 24th, 2018

Plan for this discussion:

- Benchmark set-up, overview of codes/numerical methods etc.
- Results slip contours and time series.
- Issues like boundary conditions, spin-up. Discussion of metrics and how to determine a successful verification exercise.

After lunch:

• Discussion of future SEAS plans: benchmarks, platform, proposals, relationships with other working groups.

Summary of Participating Modelers and Codes:

	Method	Time stepping	Cell size	Domain size (Lx, Lz) (Ly)	Outer B.C.
Jiang	BEM (BICYCLE)	Lapusta et al., 2000	dz = 25 m	(∞, 80/160 km)	
Lambert	BEM (BICYCLE)	Lapusta et al., 2000	dz = 25/50 m	(∞, 50/80 km)	
Ма	BEM	Lapusta et al., 2000	dz = 25/50 m	(∞, 80 km)	
Luo/Idini	BEM (QDYN)	Bulirsch-Stoer ODE solver	dz = 19.53 m	(∞, ∞)	
Barbot	BEM	R-K adaptive stepping	dz = 25 m	(∞, ∞)	
Cattania	BEM		dz = 25/19 m	(∞, ∞/160/640 km)	
Erickson	2nd-order FDM	Erickson and Dunham, 2014	dz = 25 m (<40 km)	(80 km, 80 km)	traction-free
Abrahams	4th-order FDM	Erickson and Dunham, 2014	dz = 25 m (dx variable)	(100 km, 80 km)	traction-free/ displacement
Kozdon	DG FEM	Erickson and Dunham, 2014	dz = 25-50 m (near fault)	(160 km, 80 km) (800 km, 400 km)	traction-free/ displacement
Liu	BEM	R-K adaptive stepping	dz = 25 m	(∞, ∞) (720 km)	
Wei	BEM	R-K adaptive stepping	dz = 25 m	(∞, ∞) (720 km)	

L_z denotes down dip extent of computational domain.

2D anti-plane problem: a homogeneous, isotropic linear elastic half-space

$$0 = \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial z}, \quad \sigma_{xy} = \mu \frac{\partial u}{\partial x}; \quad \sigma_{yz} = \mu \frac{\partial u}{\partial z}$$

Boundary condition: free surface on the top of the model domain

$$\sigma_{yz}(x,0,t) = 0.$$

Interface conditions:

$$\sigma_{xy}(0^+, z, t) = \sigma_{xy}(0^-, z, t), \qquad \tau = F(V, \theta),$$

Friction laws on fault:

$$F = \sigma_{\rm n} f(V,\theta) \qquad f(V,\theta) = a \sinh^{-1} \left[\frac{V}{2V_0} \exp\left(\frac{f_0 + b \ln(V_0\theta/D_{\rm c})}{a}\right) \right] \qquad \frac{d\theta}{dt} = 1 - \frac{V\theta}{D_{\rm c}},$$

Initial conditions: uniform slip rate V_{init} and uniform prestress τ^0

$$\tau^{0} = \sigma_{\mathrm{n}} a_{\mathrm{max}} \sinh^{-1} \left[\frac{V_{\mathrm{init}}}{2V_{0}} \exp\left(\frac{f_{0} + b_{0} \ln(V_{0}/V_{\mathrm{init}})}{a_{\mathrm{max}}}\right) \right] + \eta V_{\mathrm{init}} \,.$$

Table 1:	Parameter values used in first benchmark	k problem
Parameter	Definition	Value, Units
ρ	density	$2670 \mathrm{~kg/m^3}$
$C_{ m S}$	shear wave speed	$3.464 \mathrm{~km/s}$
$\sigma_{ m n}$	effective normal stress on fault	$50 \mathrm{MPa}$
a_0	rate-and-state parameter	0.010
a_{\max}	rate-and-state parameter	0.025
b_0	rate-and-state parameter	0.015
$D_{ m c}$	critical slip distance	$0.008~\mathrm{m}$
$V_{ m p}$	plate rate	$10^{-9} {\rm m/s}$
$V_{ m init}$	initial slip rate	$10^{-9} {\rm m/s}$
V_0	reference slip rate	$10^{-6} {\rm m/s}$
f_0	reference friction coefficient	0.6
H	depth extent of uniform VW region	$15 \mathrm{~km}$
h	width of VW-VS transition zone	$3~{ m km}$
W_{f}	width of rate-and-state fault	$40 \mathrm{km}$
Δz	suggested cell size	$25 \mathrm{~m}$
$t_{ m f}$	final simulation time	3,000 years

Slip Profiles

(nearly all data interpolated to plot every 5 years during interseismic, every second during coseismic phase)

Lambert (dz = 50m, $L_z = 80km$): 35 events.

Lambert (dz = 25m, $L_z = 80km$): 35 events.

These results suggests there is a computational domain size dependency; dz = 25m, 50m yield similar results.

*Note: for most of the results from this benchmark, we see the models equilibrate after ~2-3 events.

Suggests longer fault length yields shorter recurrence interval.

Jiang comparison: first three events

Jiang compared to Erickson (FDM, ode45, dz = 50m down to depth of 40 km, then variable. L_z = 80km, L_x = 80km, *far-field free boundary*):

Suggests same L_z yields quite similar results for SBIM vs. FDM (with far-field free boundary for FDM).

Jiang compared to Kozdon (dG, ode45, dz = variable, L_z = 80km, L_x = 80km, *far-field free boundary condition*):

Suggests dG with variable grid spacing with dz = 25m (near the fault) compares well to SBIM (and to FDM), with far-field free boundary condition.

Suggests BIEM with fault length of 160 km yields similar results to that of half-space solution.

Abrahams (FDM, ode45, dz = 25m, L_z = 80km, L_y = 100km, *far-field displacement/free boundary condition*):

Suggests results dependent on far-field boundary conditions (for this domain size). Results with free boundary more comparable to Jiang with $L_z = 80$ km.

Abrahams comparison: first three events

Kozdon, $L_z = 400$ km, $L_x = 400$ km, with different far field boundary conditions.

Suggests there is a "large enough" domain size for volume discretization method to yield similar results to that of half-space solution, independent of far-field boundary conditions.

Luo (BIEM, static stress transfer is computed via Fourier domain following Cochard and Rice (1997)):

A kink in the slip profile tends to develop, but other features appear qualitatively similar (i.e. nucleation depth, amount of slip, recurrence).

Some take-aways:

- for these parameters, dz = 25m, 50m yield comparable results.
- L_z = 80 km not sufficient to capture half-space features (160 km seems sufficient, but probably also depends on L_x).
- for codes with volume discretization, far field boundary condition matters for smaller domain sizes. Far field free condition seems to match BIEM in this case.
 - we need to explore dependency on far-field boundary condition on domain lengths. Do we need to take large L_x, large L_z, or both?

Time Series

fltst_dp000: z = 0 km (at the free surface) fltst_dp025: z = 2.5 km fltst_dp050: z = 5 km fltst_dp075: z = 7.5 km fltst_dp100: z = 10 km fltst_dp125: z = 12.5 km fltst_dp150: z = 15 km fltst_dp175: z = 17.5 km fltst_dp200: z = 20 km fltst_dp250: z = 25 km fltst_dp300: z = 30 km fltst_dp350: z = 35 km

The SCEC Sequences of Earthquakes and Aseismic Slip Project

Benchmark Comparison Tool

Benchmark Descriptions

Downloads

Select Benchmark

Active Benchmarks					
Name	Date	Description	Action		
bp1	4/14/2018 8:08 AM	2D Antiplane Shear	Select		

Logout

Upload Data Files

Benchmark: bp1 (2D Antiplane Shear)

Version: jiang (Junle Jiang (25 m; 80 km)) Change Version

On-Fault Stations						
Name	Upload	Description	Action			
fltst_dp000	4/19/2018 6:41 PM	z = 0.0 km	Upload	Delete	View	Graph
fltst_dp025	4/19/2018 6:41 PM	z = 2.5 km	Upload	Delete	View	Graph
fltst_dp050	4/19/2018 6:41 PM	z = 5.0 km	Upload	Delete	View	Graph
fltst_dp075	4/19/2018 6:41 PM	z = 7.5 km	Upload	Delete	View	Graph
fltst_dp100	4/19/2018 6:41 PM	z = 10.0 km	Upload	Delete	View	Graph
fltst_dp125	4/19/2018 6:42 PM	z = 12.5 km	Upload	Delete	View	Graph
fltst_dp150	4/19/2018 6:42 PM	z = 15.0 km	Upload	Delete	View	Graph
fltst_dp175	4/19/2018 6:42 PM	z = 17.5 km	Upload	Delete	View	Graph
fltst_dp200	4/19/2018 6:42 PM	z = 20.0 km	Upload	Delete	View	Graph
fltst_dp250	4/19/2018 6:42 PM	z = 25.0 km	Upload	Delete	View	Graph
fltst_dp300	4/19/2018 6:42 PM	z = 30.0 km	Upload	Delete	View	Graph
fltst_dp350	4/19/2018 6:42 PM	z = 35.0 km	Upload	Delete	View	Graph

Back to Benchmark List

SC/EC

Benchmark Comparison Tool

Go --> Public Area

- Go --> Login to View Data
- Go --> Login to Upload Files
- Go --> Administrative Login

Exit to SEAS Project Home Page

Logout

Benchmark BP1 Participation

Total submissions:

11 modelers

22 model runs

different B.C.

different cell sizes

different domain sizes

User	Users Select Checked				
	Name	Description			
	abrahams	100 km X 80 km: Free surface outer BC	Select		
	abrahams.2	100 km X 80 km: Vp/2 outer BC	Select		
	barbot	Sylvain Barbot (Fortran90)	Select		
	barbot.2	Sylvain Barbot (Matlab)	Select		
	cattania	Camilla Cattania - fdra (bem)	Select		
	cattania.2	Camilla Cattania - fdra (fft, 160 km)	Select		
	cattania.3	Camilla Cattania - fdra (fft, 640 km)	Select		
	erickson	Brittany Erickson	Select		
	erickson.2	Brittany Erickson	Select		
	jiang	Junle Jiang (25 m; 80 km)	Select		
	jiang.2	Junle Jiang (25 m; 160 km)	Select		
	kozdon	SIPG :: 800 km X 400 km :: Vp/2 outer BC	Select		
	kozdon.2	SIPG :: 160 km X 80 km :: Vp/2 outer BC	Select		
	kozdon.3	SIPG :: 800 km X 400 km :: free surface outer BC	Select		
	kozdon.4	SIPG :: 160 km X 80 km :: free surface outer BC	Select		
	lambert	Valère Lambert - 25 m, 80 km domain	Select		
0	lambert.2	Valère Lambert - 50 m, 80 km domain			
	lambert.3	Valère Lambert - 25 m, 50 km domain	Select		
	liu	Yajing Liu	Select		
	luo	QDYN - Yingdi Luo, Ben Idini and Pablo Ampuero	Select		
	wei	Matt Wei	Select		
	xma	MSC-Cycle_25m_80	Select		
	xma.2	MSC-Cycle_50m_80	Select		
		Salaat Chaoling	Soloot All		

Different physical variables: stress, rate, slip, & state

Field: shear_stress (Shear stress (MPa))

0+

2E+10

Time (s)

4E+10

Field: slip_rate (Log10 out-of-plane slip rate (log10 m/s))

Field: state (Log10 state variable (log10 s))

Different depths on the fault: slip rate

Different depths on the fault: shear stress

Different depths on the fault: slip

Different depths on the fault: state

Comparison of all models

Most models have cell sizes of ~25 m and Lz = 40-80 km

Comparison of subgroups of models

Long-term evolution of slip rates/shear stresses at mid-seismogenic depth (z=7.5 km)

Most models have cell sizes of ~25 m and Lz = 40-80 km

Comparison of subgroups of models

Long-term evolution of slip rates/shear stresses at mid-seismogenic depth (z=7.5 km)

Most models have cell sizes of ~25 m and Lz = 40-80 km

The effect of boundary conditions

The effect of boundary conditions

Discrepancy due to outer B.C. is reduced in larger models

The effect of computational domain sizes

The effect of computational domain sizes

Excellent matches of similarly large models

Good match of 160/640 km/HS models

Time evolution of inter-event period

based on processing of submitted data

seismic phases: V>=0.001 m/s

Time evolution of inter-event period

based on processing of submitted data

seismic phases: V>=0.001 m/s

z=0 km

Excellent matches between slip rates at the surface Discrepancy in shear stresses between two models and others

NOTE: waveforms are aligned at the onset of the seismic phase (V>=0.001 m/s)

z=0 km

Excellent matches between slip rates at the surface Discrepancy in shear stresses between two models and others

Discrepancy in slip rates for surface-reflected rupture

NOTE: waveforms are aligned at the onset of the seismic phase (V>=0.001 m/s)

Discrepancy in slip rates for surface-reflected rupture

vertically offset

Coseismic period: 30th event in the sequence

Coseismic period: 30th event in the sequence

Take-aways from Time Series Comparisons

- Long-term evolution of the slip rate/stress/state/slip on the fault
 - Direct comparisons provided by CVWS
 - Excellent matches between models with similar setup, regardless of methods
 - Discrepancy attributable to differences in outer B.C. or domain sizes
 - Larger domain sizes (>160 km) are needed for all models to match
- Inter-event time quickly stabilizes with time (short spin-up period)
- Coseismic evolution of slip and stress
 - Currently processed manually
 - Excellent agreements in slip rates and stresses for most models at the surface
 - Larger discrepancies in the surface-reflected phase at mid-seismogenic depth, likely due to domain-size-dependent pre-event stress and hence rupture speed

Additional issues:

- Spin-up of models: seems to be qualitatively similar for large enough domains.
- Efficiency of code? e.g. variable grid spacing, linear solvers?
- Model divergence?
- How should we compare results (verification metrics)?
 - do we only accept results that show independence of domain size?
 - model characteristics, e.g. recurrence periods
 - normed errors in time series/slip profiles
- What constitutes a successful verification exercise? (how much discrepancy/matching do we expect/allow?)
 - define a tolerance on error between model results?
 - convergence as a function of resolution?

Ideas for comparison and visualization

courtesy of S. Barbot

Future SEAS plans

- Future benchmark designs: problems and logistics.
 - smaller h* (have people seen model failure at long times?) and more studies of dependencies on artificial boundary conditions.
 - more 2D problems: different evolution laws, plane strain, viscoelasticity
 - 3D problem
- Development of online platform:
 - plot slip contours
 - compute errors
- Timelines for proposals/workshop/presentation
 - SCEC poster at 2018 annual meeting
 - 2nd benchmark description out for comment in late September, to be submitted in November. Is this a TAG proposal?
 - Next workshop?
- Possible validation exercises
- Relation with different working groups (SDR group, Earthquake Simulators, CRM)