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Motivation for this study

• To be able to incorporate plastic response throughout the
entire earthquake cycle.

• Explore how plastic strain influences subsequent events.

• For this talk: to share insight into time-stepping
methodology for plasticity in SEAS models.

Details in Erickson et al. (JMPS, 2017).



Schematic for antiplane shear problem



Problem set up (Equilibrium Equation for Antiplane Strain):

Equilibrium:

0 =
∂σxy

∂x
+
∂σyz

∂z
, (x , z) ∈ [0,Lx ] × [0,Lz] (1)

Boundary Conditions:

u(0, z, t) = δ(z, t)/2 (enforce slip)
u(Lx , z, t) = Vpt/2 (remote displacement)
σyz(x ,0, t) = 0 (Earth’s free surface)
σyz(x ,Lz , t) = 0 (free surface)

where u is the out-of-plane displacement. Fault is at boundary
x = 0.



Stress-Strain Relations



Plastic Constitutive Relations

Hooke’s Law:
σij = Cijkl(εkl − ε

p
kl)

Elastic domain in stress space: Eσ =
{
σij : F(σij) ≤ 0

}
where

F(σij) is the yield function.

Flow rule:
ε̇p

ij = λPij(σij)

for plastic strain rate tensor Pij .



Drucker-Prager Plasticity

Stresses in the medium are constrained by yield condition:

F(σ, γp) = τ̄ − (σY + hγp) ≤ 0, (2)

where γp is the hardening parameter (equivalent plastic strain)
and h is the hardening modulus.

τ̄ =
√

sijsij/2 (3)

is the second invariant of the deviatoric stress sij = σij −σkkδij/3.



Drucker-Prager Plasticity

The yield stress

σY = −(σkk/3) sin(φ) + c cos(φ) (4)

where c is the cohesion and φ is the internal friction angle.

The flow rule given by ε̇p
ij = λPij where λ =

√
2ėp

ij ė
p
ij is the

deviatoric plastic strain rate, such that

γp(t) =

∫ t

0
λ(s) ds. (5)



Drucker-Prager Plasticity

Pij is the plastic strain rate tensor, given by

Pij = sij/(2τ̄) + (β/3)δij (6)

where β determines degree of plastic dilatancy.

These details can be accounted for by expressing the
stress-strain relationship in incremental form:

dσ = Cep(σ) : dε (7)

where the elastoplastic tangent stiffness tensor Cep is a
nonlinear function of stress.
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Summary of Equilibrium Equation for Elastic vs. Plastic:

Elastic:
∂
∂x

(
µ
∂u
∂x

)
+
∂
∂z

(
µ
∂u
∂z

)
= 0

For shear modulus µ.

Plastic:

∂
∂x

(
Cep

11 (σ)
∂du
∂x

+ Cep
12 (σ)

∂du
∂z

)
+
∂
∂z

(
Cep

21 (σ)
∂du
∂x

+ Cep
22 (σ)

∂du
∂z

)
= 0

For elastoplastic moduli Cep(σ) and displacement increment
du. We denote this

E [Cep(σ)du] = 0 (8)
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Elastoplastic moduli for Antiplane

Cep
11 =

µ if λ = 0,

µ −
µσ2

xy/τ̄
2

1+h/µ if λ > 0,

Cep
22 =

µ if λ = 0,

µ −
µσ2

yz/τ̄
2

1+h/µ if λ > 0,

and

Cep
12 = Cep

21 =

0 if λ = 0,

−
µσxyσyz/τ̄2

1+h/µ if λ > 0.



The Return-Mapping Algorithm

Drucker-Prager reduces to von-Mises in antiplane strain. The
return map is the closest point projection onto the yield surface.

Simo and Hughes (2000)



Fully discretized problem

The fully discrete, equilibrium equation can be expressed

E
[
Cep(σn+1)dun+1

]
= bn+1, (9)

and is a nonlinear function of dun+1. Vector bn+1 stores all the
information about the boundary conditions.



Time-Stepping Method

Assume the system is equilibrated at time tn and that the
stresses satisfy the yield condition.

1. Explicitly integrate to obtain slip δn+1 and state θn+1. This
yields the incremental boundary conditions:

du(0, z, tn+1) = (δ(z, tn+1) − δ(z, tn))/2
du(Lx , z, tn+1) = Vp(tn+1

− tn)/2
dσyz(y ,0, tn+1) = 0

dσyz(y ,Lz , tn+1) = 0.

The task is then to determine dun+1 that satisfies equilibrium,
with consistent stresses.



Time-Stepping Method, cont’d

2. Set k = 0, let du(k) be the initial (elastic) guess for the
displacement increment dun+1. Correct this by the Newton
procedure (detailed shortly).

3. Compute shear stress on the fault τn+1
qs = σn+1

xy

∣∣∣∣∣
x=0

.

4. Equate shear stress with frictional strength
τn+1

qs − ηVn+1 = σnf(Vn+1, θn+1) and solve for slip velocity
Vn+1. Return to step 1.
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Newton method

Nonlinear equation:

E
[
Cep(σn+1)dun+1

]
= 0. (10)

Recall that we have an initial, elastic guess du(k).

2a. Compute the strain increments:

dε(k)
xy =

1
2
∂du(k)

∂x
,

dε(k)
yz =

1
2
∂du(k)

∂z

2b. Compute elastic trial state and use return mapping
algorithm to compute consistent stresses σn+1,(k)

xy , σn+1,(k)
yz .
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Newton procedure, cont’d

2c. Check if equilibrium equation

E
[
Cep(σn+1,(k))du(k)

]
= bn+1 (11)

is met. If so, end.

If not, set k = k + 1, and solve

E
[
Cep(σn+1,(k))du(k+1)

]
= bn+1 (12)

for the update du(k+1) and return to step 2a, iterating until
equilibrium is met.
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Rate-and-state parameters, normal stress













Some benefits and drawbacks

• Methods capable of integrating through periods
characterized by varying time scales, account for both
rate-independent and visco-plasticity.

• With this plastic description, plastic response limited to
coseismic phase.

• Computationally expensive. Currently implemented in
serial code, with direct solver. Need to re-compute matrix
factorization at every time step and every Newton iteration.



Thank you.

berickson@pdx.edu
web.pdx.edu/∼be3


