Time Stepping for Earthquake Cycles
with Plasticity

Brittany A. Erickson', Eric M. Dunham?, Arash Khosravifar®

"Department of Mathematics and Statistics, Portland State University
2Department of Geophysics, Stanford University
3 Department of Civil Engineering, Portland State University

Funding: NSF, SCEC

Dynamic Rupture/SEAS Joint Workshop
April 24th, 2018



Motivation for this study

» To be able to incorporate plastic response throughout the
entire earthquake cycle.

e Explore how plastic strain influences subsequent events.

e For this talk: to share insight into time-stepping
methodology for plasticity in SEAS models.

Details in Erickson et al. (JMPS, 2017).



Schematic for antiplane shear problem
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Problem set up (Equilibrium Equation for Antiplane Strain):

Equilibrium:

0— doxy  doyz
- ox 2z’

(x,2) €0, Lx] X [0, L] (1)
Boundary Conditions:

u(0,z,t) = 0o(z,t)/2 (enforce slip)
u(Lx,z,t) = Vpt/2 (remote displacement)
oyz(x,0,1) 0 (Earth’s free surface)
oyz(X, Lz, t)

0 (free surface)

where u is the out-of-plane displacement. Fault is at boundary
x =0.



Stress-Strain Relations
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Plastic Constitutive Relations

Hooke’s Law:
ajj = Cija(ex — €p))

Elastic domain in stress space: E; = {o,-j : F(oj) < 0} where
F(oj) is the yield function.
Flow rule:

& = APy(oy)

for plastic strain rate tensor Pj.



Drucker-Prager Plasticity

Stresses in the medium are constrained by yield condition:

F(G/ Vp) =T~ (UY + hyp) <0, (2)

where )P is the hardening parameter (equivalent plastic strain)
and h is the hardening modulus.

T= \[sjS;/2 3)

is the second invariant of the deviatoric stress sj = gjj — ok 0jj/3.



Drucker-Prager Plasticity

The yield stress

oy = —(0kk/3)sin(¢) + ¢ cos(¢)
where c is the cohesion and ¢ is the internal friction angle.

The flow rule given by ég = APj where A = /2é§é;]? is the
deviatoric plastic strain rate, such that

t
yp(t):j;)\(s) ds.

(4)



Drucker-Prager Plasticity

P;j is the plastic strain rate tensor, given by
Pjj = sjj/(2T) + (B/3)0jj

where  determines degree of plastic dilatancy.



Drucker-Prager Plasticity

P;j is the plastic strain rate tensor, given by
Pjj = sjj/(2T) + (B/3)0jj

where  determines degree of plastic dilatancy.

These details can be accounted for by expressing the
stress-strain relationship in incremental form:

do = C®%(0) : de

where the elastoplastic tangent stiffness tensor C®" is a
nonlinear function of stress.



Summary of Equilibrium Equation for Elastic vs. Plastic:

Elastic:
9 (,2u), 2 (,24)
ox \Hax +3z“82_

For shear modulus p.



Summary of Equilibrium Equation for Elastic vs. Plastic:

Elastic:
9 (,2u), 2 (.2v)
8x”8x+8z”az -

For shear modulus p.

Plastic:

d ddu ddu) Jd ddu ddu
S (or %+ oS (o0 + e ) -0

For elastoplastic moduli C®P(o) and displacement increment
du. We denote this

E[C®(c)du] =0 (8)



Elastoplastic moduli for Antiplane

u if A =0,
Cep — { 3 Haiy/%z

W |f/\>0,
= T,
_W |fA>O,

and
0 if A =0,

c”—c”—{ -
12 21 UOxyOyz[T .



The Return-Mapping Algorithm
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Drucker-Prager reduces to von-Mises in antiplane strain. The
return map is the closest point projection onto the yield surface.



Fully discretized problem

The fully discrete, equilibrium equation can be expressed

E[Cep(on+1)dun+1] — bn+1, (9)

and is a nonlinear function of du"t'. Vector b"t' stores all the
information about the boundary conditions.



Time-Stepping Method

Assume the system is equilibrated at time t" and that the
stresses satisfy the yield condition.

1. Explicitly integrate to obtain slip 6"*' and state 6™+'. This
yields the incremental boundary conditions:

du(0,z, t"") = (8(z,t"1) = 5(z,t"))/2
du(Ly, z, t") = Vp(t"T - t")/2
doy(y,0,t"™1) = 0
doyz(y, L, t") = 0.

The task is then to determine du™' that satisfies equilibrium,
with consistent stresses.



Time-Stepping Method, cont’d

2. Set k = 0, let du®) be the initial (elastic) guess for the
displacement increment du™t'. Correct this by the Newton
procedure (detailed shortly).
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x=0



Time-Stepping Method, cont’d

2. Set k = 0, let du®) be the initial (elastic) guess for the
displacement increment du™t'. Correct this by the Newton
procedure (detailed shortly).

3. Compute shear stress on the fault g3 ' = o}t
x=0

4. Equate shear stress with frictional strength
Tge | = V™! = g, f(V™T, 61 and solve for slip velocity
V”Jr1 Return to step 1.



Newton method

Nonlinear equation:

E [Cep(c™)au™ '] = 0.

Recall that we have an initial, elastic guess du(®).



Newton method
Nonlinear equation:

E [Cep(c™)au™ '] = 0. (10)
Recall that we have an initial, elastic guess du(®).

2a. Compute the strain increments:

k) 1 9du(®)
dexy = 37ox

k) 1 ddu(k)
dey; = 2 9z

2b. Compute elastic trial state and use return mapping

. . 1,(k 1
algorithm to compute consistent stresses ajy ), a3 ).



Newton procedure, cont’d

2c. Check if equilibrium equation
E[Cep(an+1,(k))du(k)] — pn+1

is met. If so, end.

(11)



Newton procedure, cont’d

2c. Check if equilibrium equation
E [Cep(an+1,(k))du(k)] — pn+1 (11)

is met. If so, end.

If not, set k = k + 1, and solve

E[Cep(an+1,(k))du(k+1)] _ bn+1 (12)

for the update du(*+') and return to step 2a, iterating until
equilibrium is met.



Rate-and-state parameters, normal stress
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slow sliding

Earthquake Cycles: ea;hquakes
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Earthquake Cycles:
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Earthquake Cycles: ea}hquakes slow sliding time increasing
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Evolution of damage zones:

“flower structure”

7 (ty2) (107)
a) Event 1 b Event 2 (c)
0] V 0.08| ‘( 0.16|

Event 8

(d) _ Event 18

06 v 14

Depth (km)
B

0.2 04

Distance Off-Fault (km)

A distribution of plastic strain corresponds to a region of
permanently fractured rocks.



Fault Parallel Off-set (m)

How much off-set is accommodated by
plastic strain?
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Can be quite significant (~2 m per 10 ruptures, 10% of tectonic
deformation budget). If SSD deficit of 3-19% exists (Xu et al.,
2016), then some of this can be attributed to plastic deformation.



Some benefits and drawbacks

o Methods capable of integrating through periods
characterized by varying time scales, account for both
rate-independent and visco-plasticity.

e With this plastic description, plastic response limited to
coseismic phase.

o Computationally expensive. Currently implemented in
serial code, with direct solver. Need to re-compute matrix
factorization at every time step and every Newton iteration.



Thank you.

berickson@pdx.edu
web.pdx.edu/~be3



