# Time Stepping for Earthquake Cycles with Plasticity 

Brittany A. Erickson ${ }^{1}$, Eric M. Dunham ${ }^{2}$, Arash Khosravifar ${ }^{3}$<br>${ }^{1}$ Department of Mathematics and Statistics, Portland State University<br>${ }^{2}$ Department of Geophysics, Stanford University<br>${ }^{3}$ Department of Civil Engineering, Portland State University

Funding: NSF, SCEC

Dynamic Rupture/SEAS Joint Workshop
April 24th, 2018

## Motivation for this study

- To be able to incorporate plastic response throughout the entire earthquake cycle.
- Explore how plastic strain influences subsequent events.
- For this talk: to share insight into time-stepping methodology for plasticity in SEAS models.

Details in Erickson et al. (JMPS, 2017).

## Schematic for antiplane shear problem



## Problem set up (Equilibrium Equation for Antiplane Strain):

Equilibrium:

$$
\begin{equation*}
0=\frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y z}}{\partial z}, \quad(x, z) \in\left[0, L_{x}\right] \times\left[0, L_{z}\right] \tag{1}
\end{equation*}
$$

Boundary Conditions:

$$
\begin{aligned}
u(0, z, t) & =\delta(z, t) / 2 \quad \text { (enforce slip) } \\
u\left(L_{x}, z, t\right) & =V_{p} t / 2 \quad \text { (remote displacement) } \\
\sigma_{y z}(x, 0, t) & =0 \quad \text { (Earth's free surface) } \\
\sigma_{y z}\left(x, L_{z}, t\right) & =0 \quad \text { (free surface) }
\end{aligned}
$$

where $u$ is the out-of-plane displacement. Fault is at boundary $x=0$.

## Stress-Strain Relations



## Plastic Constitutive Relations

Hooke's Law:

$$
\sigma_{i j}=C_{i j k l}\left(\epsilon_{k l}-\epsilon_{k l}^{p}\right)
$$

Elastic domain in stress space: $E_{\sigma}=\left\{\sigma_{i j}: F\left(\sigma_{i j}\right) \leq 0\right\}$ where
$F\left(\sigma_{i j}\right)$ is the yield function.

Flow rule:

$$
\dot{\epsilon}_{i j}^{p}=\lambda P_{i j}\left(\sigma_{i j}\right)
$$

for plastic strain rate tensor $P_{i j}$.

## Drucker-Prager Plasticity

Stresses in the medium are constrained by yield condition:

$$
\begin{equation*}
F\left(\sigma, \gamma^{p}\right)=\bar{\tau}-\left(\sigma_{Y}+h \gamma^{p}\right) \leq 0 \tag{2}
\end{equation*}
$$

where $\gamma^{p}$ is the hardening parameter (equivalent plastic strain) and $h$ is the hardening modulus.

$$
\begin{equation*}
\bar{\tau}=\sqrt{s_{i j} s_{i j} / 2} \tag{3}
\end{equation*}
$$

is the second invariant of the deviatoric stress $s_{i j}=\sigma_{i j}-\sigma_{k k} \delta_{i j} / 3$.

## Drucker-Prager Plasticity

The yield stress

$$
\begin{equation*}
\sigma_{Y}=-\left(\sigma_{k k} / 3\right) \sin (\phi)+c \cos (\phi) \tag{4}
\end{equation*}
$$

where $c$ is the cohesion and $\phi$ is the internal friction angle.
The flow rule given by $\dot{\epsilon}_{i j}^{p}=\lambda P_{i j}$ where $\lambda=\sqrt{2 \dot{e}_{i j}^{p} \dot{e}_{i j}^{p}}$ is the deviatoric plastic strain rate, such that

$$
\begin{equation*}
\gamma^{p}(t)=\int_{0}^{t} \lambda(s) d s \tag{5}
\end{equation*}
$$

## Drucker-Prager Plasticity

$P_{i j}$ is the plastic strain rate tensor, given by

$$
\begin{equation*}
P_{i j}=s_{i j} /(2 \bar{\tau})+(\beta / 3) \delta_{i j} \tag{6}
\end{equation*}
$$

where $\beta$ determines degree of plastic dilatancy.

## Drucker-Prager Plasticity

$P_{i j}$ is the plastic strain rate tensor, given by

$$
\begin{equation*}
P_{i j}=s_{i j} /(2 \bar{\tau})+(\beta / 3) \delta_{i j} \tag{6}
\end{equation*}
$$

where $\beta$ determines degree of plastic dilatancy.

These details can be accounted for by expressing the stress-strain relationship in incremental form:

$$
\begin{equation*}
d \sigma=C^{e p}(\sigma): d \epsilon \tag{7}
\end{equation*}
$$

where the elastoplastic tangent stiffness tensor $C^{e p}$ is a nonlinear function of stress.

## Summary of Equilibrium Equation for Elastic vs. Plastic:

 Elastic:$$
\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial u}{\partial z}\right)=0
$$

For shear modulus $\mu$.

## Summary of Equilibrium Equation for Elastic vs. Plastic:

Elastic:

$$
\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial u}{\partial z}\right)=0
$$

For shear modulus $\mu$.

Plastic:
$\frac{\partial}{\partial x}\left(C_{11}^{e p}(\sigma) \frac{\partial d u}{\partial x}+C_{12}^{e p}(\sigma) \frac{\partial d u}{\partial z}\right)+\frac{\partial}{\partial z}\left(C_{21}^{e p}(\sigma) \frac{\partial d u}{\partial x}+C_{22}^{e p}(\sigma) \frac{\partial d u}{\partial z}\right)=0$
For elastoplastic moduli $C^{e p}(\sigma)$ and displacement increment $d u$. We denote this

$$
\begin{equation*}
E\left[C^{e p}(\sigma) d u\right]=0 \tag{8}
\end{equation*}
$$

## Elastoplastic moduli for Antiplane

$$
\begin{aligned}
& C_{11}^{e p}= \begin{cases}\mu & \text { if } \lambda=0, \\
\mu-\frac{\mu \sigma_{x y}^{2} / \bar{\tau}^{2}}{1+h / \mu} & \text { if } \lambda>0,\end{cases} \\
& C_{22}^{e p}= \begin{cases}\mu & \text { if } \lambda=0, \\
\mu-\frac{\mu \sigma_{y z}^{2} / \bar{\tau}^{2}}{1+h / \mu} & \text { if } \lambda>0,\end{cases}
\end{aligned}
$$

and

$$
C_{12}^{e p}=C_{21}^{e p}= \begin{cases}0 & \text { if } \lambda=0 \\ -\frac{\mu \sigma_{x y} \sigma_{y z} / \bar{\tau}^{2}}{1+h / \mu} & \text { if } \lambda>0 .\end{cases}
$$

## The Return-Mapping Algorithm



Drucker-Prager reduces to von-Mises in antiplane strain. The return map is the closest point projection onto the yield surface.

## Fully discretized problem

The fully discrete, equilibrium equation can be expressed

$$
\begin{equation*}
E\left[C^{e p}\left(\sigma^{n+1}\right) d u^{n+1}\right]=b^{n+1} \tag{9}
\end{equation*}
$$

and is a nonlinear function of $d u^{n+1}$. Vector $b^{n+1}$ stores all the information about the boundary conditions.

## Time-Stepping Method

Assume the system is equilibrated at time $t^{n}$ and that the stresses satisfy the yield condition.

1. Explicitly integrate to obtain slip $\delta^{n+1}$ and state $\theta^{n+1}$. This yields the incremental boundary conditions:

$$
\begin{aligned}
d u\left(0, z, t^{n+1}\right) & =\left(\delta\left(z, t^{n+1}\right)-\delta\left(z, t^{n}\right)\right) / 2 \\
d u\left(L_{x}, z, t^{n+1}\right) & =V_{p}\left(t^{n+1}-t^{n}\right) / 2 \\
d \sigma_{y z}\left(y, 0, t^{n+1}\right) & =0 \\
d \sigma_{y z}\left(y, L_{z}, t^{n+1}\right) & =0 .
\end{aligned}
$$

The task is then to determine $d u^{n+1}$ that satisfies equilibrium, with consistent stresses.

## Time-Stepping Method, cont'd

2. Set $k=0$, let $d u^{(k)}$ be the initial (elastic) guess for the displacement increment $d u^{n+1}$. Correct this by the Newton procedure (detailed shortly).

## Time-Stepping Method, cont'd

2. Set $k=0$, let $d u^{(k)}$ be the initial (elastic) guess for the displacement increment $d u^{n+1}$. Correct this by the Newton procedure (detailed shortly).
3. Compute shear stress on the fault $\tau_{q s}^{n+1}=\left.\sigma_{x y}^{n+1}\right|_{x=0}$.

## Time-Stepping Method, cont'd

2. Set $k=0$, let $d u^{(k)}$ be the initial (elastic) guess for the displacement increment $d u^{n+1}$. Correct this by the Newton procedure (detailed shortly).
3. Compute shear stress on the fault $\tau_{q s}^{n+1}=\left.\sigma_{x y}^{n+1}\right|_{x=0}$.
4. Equate shear stress with frictional strength
$\tau_{q s}^{n+1}-\eta V^{n+1}=\sigma_{n} f\left(V^{n+1}, \theta^{n+1}\right)$ and solve for slip velocity
$V^{n+1}$. Return to step 1.

## Newton method

Nonlinear equation:

$$
\begin{equation*}
E\left[C_{e p}\left(\sigma^{n+1}\right) d u^{n+1}\right]=0 \tag{10}
\end{equation*}
$$

Recall that we have an initial, elastic guess $d u^{(k)}$.

## Newton method

Nonlinear equation:

$$
\begin{equation*}
E\left[C_{e p}\left(\sigma^{n+1}\right) d u^{n+1}\right]=0 \tag{10}
\end{equation*}
$$

Recall that we have an initial, elastic guess $d u^{(k)}$.
2a. Compute the strain increments:

$$
\begin{aligned}
d \epsilon_{x y}^{(k)} & =\frac{1}{2} \frac{\partial d u^{(k)}}{\partial x} \\
d \epsilon_{y z}^{(k)} & =\frac{1}{2} \frac{\partial d u^{(k)}}{\partial z}
\end{aligned}
$$

2b. Compute elastic trial state and use return mapping algorithm to compute consistent stresses $\sigma_{x y}^{n+1,(k)}, \sigma_{y z}^{n+1,(k)}$.

## Newton procedure, cont'd

2c. Check if equilibrium equation

$$
\begin{equation*}
E\left[C^{e p}\left(\sigma^{n+1,(k)}\right) d u^{(k)}\right]=b^{n+1} \tag{11}
\end{equation*}
$$

is met. If so, end.

## Newton procedure, cont'd

2c. Check if equilibrium equation

$$
\begin{equation*}
E\left[C^{e p}\left(\sigma^{n+1,(k)}\right) d u^{(k)}\right]=b^{n+1} \tag{11}
\end{equation*}
$$

is met. If so, end.

If not, set $k=k+1$, and solve

$$
\begin{equation*}
E\left[C^{e p}\left(\sigma^{n+1,(k)}\right) d u^{(k+1)}\right]=b^{n+1} \tag{12}
\end{equation*}
$$

for the update $d u^{(k+1)}$ and return to step 2 a , iterating until equilibrium is met.

## Rate-and-state parameters, normal stress






Evolution of damage zones:


A distribution of plastic strain corresponds to a region of permanently fractured rocks.

How much off-set is accommodated by plastic strain?


Can be quite significant ( $\sim 2 \mathrm{~m}$ per 10 ruptures, $10 \%$ of tectonic deformation budget). If SSD deficit of 3-19\% exists (Xu et al., 2016), then some of this can be attributed to plastic deformation.

## Some benefits and drawbacks

- Methods capable of integrating through periods characterized by varying time scales, account for both rate-independent and visco-plasticity.
- With this plastic description, plastic response limited to coseismic phase.
- Computationally expensive. Currently implemented in serial code, with direct solver. Need to re-compute matrix factorization at every time step and every Newton iteration.

Thank you.
berickson@pdx.edu web.pdx.edu/~be3

