Modeling of the nucleation process of
laboratory and crustal earthquakes
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Objective: To understand the mechanism of precursory slow slip

Evidence for precursory slow slip leading to the onset of an earthquake (e.g., Dodge et
al. 1996; McGuire et al. 2005; Bouchon et al. 2011; Tape et al. 2013; Schurr et al. 2014)

(Latour et al., 2013)
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In the experiments of Latour et al. (2013):
* Dynamic shear rupture is spontaneously nucleated under slow applied loading

* Photo-elasticity technique is used to identify the evolution of rupture front (red curve)
* Initial slow rupture propagation and its acceleration to sub-shear speeds is observed



Precursory slow slip in laboratory experiments
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(Latour et al., 2013)

In the experiments of Latour et al. (2013):
* Length scale of slow rupture propagation decreases with increasing normal stress



Characteristics of precursory slow slip in lab experiments

(Latour et al., 2013)
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Key observations:

* There are three stages of the rupture evolution: (i) slow quasi-static propagation,
(i) faster acceleration and (iii) rapid dynamic rupture propagation

» Length scale of quasi-static rupture decreases with increasing normal stress
* Dynamic propagation phase does not occur under small normal stresses (< 0.5 MPa)



Fault model

Laboratory experiment Fault model
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(Latour et al., GRL, 2013) (Lapusta and Liu, 2009; Kaneko et al., 2010)

2D dynamic model (in-plane) with a fault embedded into a polycarbonate medium
Fault response is governed by rate-and-state friction with the slip law

Set-up of the model is motivated by that of the laboratory experiments
(e.g., rate-strengthening segments mimic coating of viscous patches)

Dynamic shear ruptures nucleate spontaneously under slow background loading

We vary parameters not well constrained from lab experiments: a - b, D.and T



Modeled nucleation agrees well with lab observations

Red: laboratory; Blue: simulation
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* The asymmetry of the rupture behavior is reproduced by different lengths of the
rate-strengthening (creeping) patches (Also the characteristics of slip-law nucleation)




Modeled nucleation agrees well with lab observations

Red: laboratory; Blue: simulation
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The asymmetry of the rupture behavior is reproduced by different lengths of the
rate-strengthening (creeping) patches (Also the characteristics of slip-law nucleation)

There is a slight mismatch for o = 0.56 MPa likely due to stress inhomogeneity in this
particular experimental run



Modeled nucleation agrees well with lab observations

Red: laboratory; Blue: simulation
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The asymmetry of the rupture behavior is reproduced by different lengths of the
rate-strengthening (creeping) patches (Also the characteristics of slip-law nucleation)

There is a slight mismatch for o = 0.56 MPa likely due to stress inhomogeneity in this
particular experimental run

Positions of the modeled and observed rupture fronts are in excellent agreement



Model agrees with experiments with different normal stresses

Laboratory experiments Numerical models
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Model reproduces key observations:
* There are three stages of the rupture evolution: (i) slow quasi-static propagation,
(i) faster acceleration and (iii) rapid dynamic rupture propagation

» Length scale of quasi-static rupture decreases with increasing normal stress
* Dynamic propagation phase does not occur under small normal stresses (< 0.5 MPa)



Model agrees with experiments with different normal stresses

Laboratory experiments Numerical models
1000 ‘ =R ' : nic. nredagetion o 1000 F ' T ' ' ' —

500 | Laboratory experiments d..ynamf_\p:rg pagat!on ] 500 | O (MPa) .
g O (MPa) W7 7 B oy 5 5 dynémi¢’prdpagation
S : 7 /] §
= 100 05 T “ 1] 1 % 100 s
= sof 77 8 s $
o) 7/ / 39 ol
o 0 it o S

A V4 o @
@ 10F s T 4 - n 10+ . ;
e 7 A i quasi-static
Ei 5k er” ] 5 S propagation L
T X\C p‘o,‘)-'-a? > S O =
1 ua‘:-;\ S‘a // 2 o ; AT
B = - 7 r *
-~ L 1 L L 1 1 1 05F h RR
10 15 20 30 50 70 100 150
Rupture length (mm) 6 10 15 20 30 50 70 100 150

Rupture length (mm)

h*:: = Rice & Ruina theoretical estimate

Other findings not discussed today:

* The growth of rupture can be scaled by "breakdown power’ (G'V, /¢) and h®

« The acceleration phase occurs in equivalent quasi-static simulations, suggesting
that the acceleration phase is an asesimic process

* Background loading rate and loading configuration significantly affect the
rupture propagation speeds during nucleation



How do we test our model against real earthquakes?
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Measurements of the friction properties of SAFOD samples

Depth (m)

Velocity-step experiment
showing rate-weakening
behavior (Carpenter etal., |

JGR, 2015)
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* Rocks near or within the SDZ and CDZ damage zones

generally show rate-strengthening frictional behavior,
consistent with the creeping segment of SAF

* However, three experimental runs (out of ~50) show rate-

weakening behavior, indicating seismic rupture can
nucleate for those cases

* SAFOD geophysical logs provide in-situ measurements of

elastic properties; nearly all the parameters are constrained
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Load Point Displacement (um)

I wall rock near SDZ |

Depth (m) 3190.57
P wavespeed V), (mn/s) 4963
S wavespeed V; (m/s) 2986
density p (kg m~3) 2613
shear modulus p (GPa) 23.3
Lamé’s parameter A (GPa) 179
Poisson’s ratio v 0.216
effective stress (o — p) (MPa) 122

Rate and state parameter a

0.00661

Rate and state parameter b

0.00894

b—a 0.00233
characteristic slip D, (pm) 233
nucleation size hjy (m) 19




Predicting the nucleation process of SAFOD earthquakes
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The behavior of the nucleation processes is qualitatively similar to that of
laboratory ones (despite up to a factor of 103 difference in model parameters)

The length and time scales are orders of magnitude different

The acceleration phase starts at ~1 day before the onset of dynamic rupture (as
opposed to milliseconds)



Can the nucleation phase of SAFOD earthquakes be detected?

Assume M2 repeaters rupture a square fault 102 .. Wall rock near SDZ
Compute strain rate changes due to slip 0t | : : : :
evolution on the fault with a correction L o N
. . _ h i
factor that approximates 3D nucleation _qge ey Theurtmino Tee
= | |
w 10_8 i | I
z =0 plane Q I |
Fault S
03 Z E SR I [ S '
DYl o | £ T |
100 m 107" | |
I I
-14 |
107}
------------------------- i s AU N
Y 10° 10° 10" 10° 10° 10" 10° 107 10~

Time to the onset of earthquake rupture (s)

Compare predicted strain changes with detection threshold of strainmeter

Preseismic strain changes may be large enough to be detected by borehole
strainmeters situated within ~100 m from the hypocenter (but not at 1 km away)

— Testable with future deployment of strainmeters at the existing SAFOD
observatory



Conclusions

Relatively simple model incorporating rate-and-state friction (w/ the
slip law) and elastic continuum can quantitatively reproduce the
evolution of rupture nucleation observed in laboratory experiments.

In both laboratory and numerical experiments with a range of normal
stresses, the nucleation proceeds in two distinct phases: initial slow
quasi-static propagation phase and faster acceleration phase.

The nucleation process of SAFOD M2 repeaters may also consist of two
distinct phases, with the nucleation size of ~60 m.

The nucleation phase of SAFOD repeaters may be observable in the
hours before the occurrence of seismic rupture by strainmeters located
close (~100 m) to the hypocenter, in a position that can be reached by
the existing borehole.

Kaneko et al. (JGR, 2016; GRL, 2017)






Main question: How do earthquake ruptures nucleate?

Evidence for precursory slow slip leading to the onset of an earthquake (e.g,,
Dodge et al. 1996; McGuire et al. 2005; Bouchon et al. 2011; Tape et al. 2013; Schurr et al. 2014)

Two possible
interpretations of
precursory slow slip
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What controls the behavior of nucleating ruptures?
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The growth of rupture can be scaled by “breakdown power’ (GV;/¢) and
h”— individual curves collapse in a consistent way

Critical nucleation size and breakdown power control the scaling of
nucleating ruptures



