
Simplify Your Science
with Workflow Tools

Scott Callaghan
scottcal@usc.edu

Southern California Earthquake Center

2023 IHPCSS
July 11, 2023

I’ve got a problem.

600,000 earthquakes

420 million seismograms

26 million computational tasks

7/13/2023 Southern California Earthquake Center 1

2

Why am I doing this?
• Want to know expected earthquake shaking over the next 50 years

• Building codes
• Insurance rates
• Disaster planning

• Interested in Southern
California, near Los Angeles

• Want to use best available
science
• Run wave propagation simulations
of many possible earthquakes

• Use shaking information for hazard estimates

Southern California Earthquake Center

What are my challenges?
• Automation

• Too many jobs to run by hand

• Data management
• Millions of input and output files to track

• Job execution
• Heterogenous job types (serial, parallel, CPU, GPU)
• Millions of tasks

• Error recovery
• Resiliency to common problems

7/13/2023 Southern California Earthquake Center 3

Solution: Scientific Workflows
• Decided to use scientific workflows to manage

challenges

• Selected a pair of open-source tools which work
together
• Pegasus-WMS
• HTCondor

• Express tasks as a directed graph of jobs with
dependencies
• No changes to application codes

• Jobs are queued and executed

7/13/2023 Southern California Earthquake Center 4

How did workflow tools help?
• Automation

• Jobs are automatically submitted when ready to run
• Workflow tools able to automate jobs with 2FA

• Data management
• Input and output files are copied automatically

• Job execution
• Support remote, distributed execution of heterogeneous jobs
• Workflow has run on 11 systems since 2007

• Error recovery
• Failed jobs retried
• Workflow checkpointed if jobs keep failing

7/13/2023 Southern California Earthquake Center 5

Compute resources

Workflow middleware

Scientific codes

CPU GPU

HTC

cloud cluster

execution

task graph

data
management

6

Challenge: Data Management
• Millions of data files produced and consumed

• Pegasus provides staging
• Symlinks files if possible, transfers files if needed
• Transfers output back to local archival disk
• Supports running parts of workflows on separate systems

• Cleans up temporary files when no longer needed
• Directory hierarchy to reduce files per directory

• We added automated checks for file correctness
• Right number of files, NaNs, zero-value checks, correct size
• Included as new jobs in workflow

Southern California Earthquake Center

Challenge: Job Execution

• For large parallel jobs, workflow tools submit to remote scheduler
• SSH (or other tool) puts jobs in remote queue
• Runs like a normal batch job
• Can specify either CPU or GPU nodes

• Workflow tools support job bundling

• For small serial jobs, need high throughput
• Putting lots of jobs in the batch queue is ill-advised

• Scheduler isn’t designed for heavy job load
• Scheduler cycle is ~5 minutes
• Policy limits number of job submissions

7Southern California Earthquake Center

task 1
. . .

. . .

. . .

Workflow
submission host

Remote compute
resource

task 1
task 2
task 3
. . .

Workflow
management
system

Remote queue

Pegasus-mpi-cluster (PMC)
• MPI wrapper around serial or thread-parallel jobs

• Manager-worker paradigm
• Preserves dependencies
• Job is submitted to multiple nodes, starts PMC
• Specify jobs as usual, Pegasus does wrapping

• Uses intelligent scheduling
• Core counts
• Memory requirements

• Developed for our application

8Southern California Earthquake Center

workflow

PMC

manager

workers

Recent Results
• Completed regional hazard calculation for Southern California

• 95 days of around-the-clock execution

• Used 772,000 node-hours on Summit
• Peak of 73% of the system (3382 nodes)

• Workflow tools:
• Ran 28,130 jobs
• Managed 2.5 PB of data
• Staged 74 TB / 19 M files to long-term storage
• Inserted 12.5 billion shaking metrics into
local database

7/13/2023 Southern California Earthquake Center 9

Your turn!
• What bottlenecks are you experiencing in your work that workflow

tools might be able to help with?

• Take a minute to reflect and come up with a few items.

• Now, turn to a neighbor and talk about your bottlenecks with each
other.

• Who would like to share something smart their partner said?

7/13/2023 Southern California Earthquake Center 10

Scientific workflow tools can help!
• Mature community of tool developers to improve your efficiency

• Describe your workflow as tasks with dependencies between them
• “Tasks” are anything you can run on a computer

• Separation of process from data
• Can run the same workflow with different data
• Can run the same workflow on different systems

• Provide a variety of features to help address bottlenecks

7/13/2023 Southern California Earthquake Center 11

Basic tool concepts
• Many workflow tools, but shared concepts between them

• Way to represent workflow tasks and their data
• Can be specified through API, annotations, GUI
• Explicit or implicit data roles

• Workflow prepared to run on certain hardware

• Schedule and run the workflow, honoring dependencies
• May include remote job submission and data transfer
• Some tools support interactivity and notebooks
• Capture of metadata

• User monitors workflow execution
• May include error handling and retry provisions

7/13/2023 Southern California Earthquake Center 12

NAS report
• US National Academy of Sciences commissioned a report

on automated research workflows (ARWs) in 2020

7/13/2023 Southern California Earthquake Center 13

• “The common goal of researchers implementing ARWs is
to accelerate scientific knowledge generation, potentially by
orders of magnitude, while achieving greater control and
reproducibility in the scientific process.”

• “The tools and techniques being developed under the large
umbrella of ARWs promise to transform the centuries-old
serial method of research investigation... Simultaneously,
ARWs provide a way to satisfy pressing demands across
fields to increase interoperability, reproducibility,
replicability, and trustworthiness by better tracking results,
recording data, establishing provenance, and creating more
consistent metadata than even the most dedicated
researchers can provide themselves.”

• “The common goal of researchers implementing ARWs is
to accelerate scientific knowledge generation,
potentially by orders of magnitude, while achieving
greater control and reproducibility in the scientific
process.”

• “The tools and techniques being developed under the large
umbrella of ARWs promise to transform the centuries-old
serial method of research investigation... Simultaneously,
ARWs provide a way to satisfy pressing demands across
fields to increase interoperability, reproducibility,
replicability, and trustworthiness by better tracking
results, recording data, establishing provenance, and
creating more consistent metadata than even the most
dedicated researchers can provide themselves.”

Popular Workflow Tools
• Pegasus-WMS (what I use)

• Developed at USC’s Information Sciences Institute

• Used in many science domains, including LIGO project
• Workflows are executed from local machine

• Jobs can run on local machine or on distributed resources

• You use API to write code describing workflow
• Python (recommended), Java, or R
• Define tasks with parent / child relationships
• Describe files and their roles

• Pegasus creates YAML file describing workflow
• Workflow represented by directed acyclic graph

14Southern California Earthquake Center

Popular Workflow Tools

15Southern California Earthquake Center

• eFlows4HPC (BSC)
• Workflow platform integrating

different workflow software elements
• PyCOMPS responsible for runtime
• Workflows-as-a-service paradigm

• Parsl (U of Chicago/Argonne NL)
• Parallelize Python by annotating

functions or external apps
• Integrated with Jupyter notebooks
• Link outputs and inputs of annotations

to describe workflow

• Focus on large data, many tasks

@bash_app
def mysim(stdout=("output/p1.out", "w"),

stderr=("output/p1.err", "w")):
#Call a bash command-line app ‘simulate’
return "app/simulate"

call the mysim app and wait for the result
mysim().result()

open the output file and read the result
with open('output/p1.out', 'r') as f:

print(f.read())

Popular Workflow Tools
• FireWorks (LBNL/NERSC)

• Workflows described through Python, JSON, or YAML, stored in MongoDB database
• Submit batch scripts to launch workflow
• Monitor through web interface

• Makeflow (Notre Dame)
• Makefile-type syntax to specify workflow

• Targets are output files, dependent on input files, with execution string to run
• Can work with Work Queue for management of compute resources (workers)

• Multiple clusters, pilot jobs, dynamic worker pool

• Nextflow (Seqera Labs in Barcelona, but open source)
• Uses dataflow paradigm: tasks write/read from channels (not always a file), can be

piped
• Custom scripting language for defining workflows

• Many more! Ask me about specific use cases

Southern California Earthquake Center 16

But what about Python scripts?
• You can reproduce some features with custom scripts

• Cluster scheduler supports basic features
• Can enforce job dependencies
• Email notifications when complete

• Can check exit status and retry on failure

• Copy files in and out when required

7/13/2023 Southern California Earthquake Center 17

What approach should you use?
• What are some pros and cons of using an established tool or custom

scripts?

7/13/2023 Southern California Earthquake Center 18

What did we learn?
• Workflow tools exist!

• Designed to resolve bottlenecks and improve your efficiency

• Work with any computational tasks
• No changes required to application codes

• Help manage jobs, files, and metadata

• Separate process from data
• Distributed execution
• Migrate workflow to new systems
• Easy to explain your process to new users

7/13/2023 Southern California Earthquake Center 19

Closing Thoughts

• Automation is vital, even without workflow tools
• Eliminate human polling
• Get everything to run automatically if successful
• Be able to recover from common errors

• Put ALL processing steps in the workflow
• Include validation, visualization, publishing, notifications

• Avoid premature optimization

• Consider new, larger, compute environments (dream big!)
• Larger clusters, clouds

• Tool developers want to help you!

20Southern California Earthquake Center

Links
• SCEC: http://www.scec.org
• Pegasus: http://pegasus.isi.edu
• Pegasus-mpi-cluster: http://pegasus.isi.edu/wms/docs/latest/cli-pegasus-mpi-cluster.php
• HTCondor: http://www.cs.wisc.edu/htcondor/
• Parsl: https://parsl-project.org/
• eFlows4HPC: https://eflows4hpc.eu/
• pyComps:

https://eflows4hpc.readthedocs.io/en/latest/Sections/01_Software_Stack/02_Runtime_Compo
nents/COMPSs.html

• FireWorks: https://github.com/materialsproject/fireworks
• Makeflow: http://ccl.cse.nd.edu/software/makeflow/
• Work Queue: http://ccl.cse.nd.edu/software/workqueue/
• Nextflow: https://www.nextflow.io/
• CyberShake: http://scec.usc.edu/scecpedia/CyberShake

21Southern California Earthquake Center

http://www.scec.org/
http://pegasus.isi.edu/
http://pegasus.isi.edu/wms/docs/latest/cli-pegasus-mpi-cluster.php
http://www.cs.wisc.edu/condor/
https://parsl-project.org/
https://eflows4hpc.eu/
https://eflows4hpc.readthedocs.io/en/latest/Sections/01_Software_Stack/02_Runtime_Components/COMPSs.html
https://github.com/materialsproject/fireworks
http://ccl.cse.nd.edu/software/makeflow/
http://ccl.cse.nd.edu/software/workqueue/
https://www.nextflow.io/
https://scec.usc.edu/scecpedia/CyberShake

Thanks!

Southern California Earthquake Center 22

	Simplify Your Science�with Workflow Tools
	I’ve got a problem.
	Why am I doing this?
	What are my challenges?
	Solution: Scientific Workflows
	How did workflow tools help?
	Challenge: Data Management
	Challenge: Job Execution
	Pegasus-mpi-cluster (PMC)
	Recent Results
	Your turn!
	Scientific workflow tools can help!
	Basic tool concepts
	NAS report
	Popular Workflow Tools
	Popular Workflow Tools
	Popular Workflow Tools
	But what about Python scripts?
	What approach should you use?
	What did we learn?
	Closing Thoughts
	Links
	Thanks!

