CyberShake Physics-Based Seismic Hazard Models for Northern California

Scott Callaghan and the CyberShake Collaboration

Probabilistic Seismic Hazard Analysis (PSHA)

- What will peak earthquake shaking be over the next 50 years?
- Useful information for:
 - Building engineers
 - Disaster planners
 - Insurance agencies
- PSHA performed by
 - 1. Assembling a list of earthquakes
 - 2. Determining how much shaking each event causes
 - 3. Combining the shaking levels with probabilities

12/5/2019

Two-percent probability of exceedance in 50 years map of peak ground acceleration

PSHA Approaches

- Ground Motion Prediction Equations (GMPEs)
 - Equations derived from observed data
 - Mean and standard deviation of ground motion produced from each earthquake
 - Computationally cheap
 - Statistical approach can yield unphysical results
- Simulation-based approach
 - Each earthquake is simulated using wave propagation
 - Can reduce uncertainty by capturing complex physics
 - Computationally expensive

SCEC CyberShake Project

- 3D physics-based platform for PSHA
- For each site of interest:
 - Determine nearby (<200 km) earthquakes
 - Add variability to earthquakes
 - Simulate each of 500,000 earthquakes
 - Determine maximum shaking from each
 - Combine with probabilities to produce curve
- Repeat process for multiple locations
- Continual improvement since 2007

12/5/2019

Southern California Earthquake Center

0.4 0.6 2sec SA, 2% in 50 yrs 0.8

1.0

Northern California CyberShake: Study 18.8

- Build upon previous CyberShake results
- 800+ new locations
- New velocity model of earth's crust
- Statewide simulation volumes
- Largest suite of CyberShake simulations to date

869 sites Bdensest near San Franceisco Bay

Combined Velocity Model

- No single 3D model large enough for large volumes
- Stitch together multiple models
 - Central California (blue)
 - USGS Bay Area (green)
 - Southern California (red)
 - 1D background model (white)
- Apply smoothing along model interfaces
 - Average of neighbor values

Study 18.8 Computational Requirements

CyberShake stage	Compute-hours
Velocity mesh creation	3,700 CPU
Wave propagation ("SGT") simulations	2,500 GPU
Seismogram synthesis	61,000 CPU
Total, 1 site	64,700 CPU; 2,500 GPU
Total, Northern California Study	56 million CPU, 2.1 million GPU

- Very large computational requirements
- Targeted NCSA Blue Waters and OLCF Titan supercomputers
- High degree of automation required for around-the-clock execution
 - Rely heavily on scientific workflow tools
 - Workflows orchestrated from USC

Scientific Workflow Tools

Pegasus-WMS

- Use API to create description of workflow
 - Tasks with dependencies
 - Input/output files
- Plans workflow for execution on specified systems
- Adds jobs to manage data
- Wraps executables to track metadata
- HTCondor
 - Manages real-time execution of jobs
 - Submits jobs to remote systems, checks on success
 - Monitors dependencies
 - Checkpoints workflow
- GridFTP used to transfer data

Southern California Earthquake Center

Schematic of CyberShake workflow

Automated Remote Job Submission

- Push-based
 - When jobs are ready to run, send them over the network to wait in queue
 - SSH: keys must be accepted on remote system
 - Globus GRAM: protocol for job submission, requires support on remote system
 - rvGAHP: daemon on remote system connects to workflow submit host
 - Can be used on systems with two-factor authentication
- Pull-based ("pilot jobs")
 - Submit job on remote system first
 - After job starts up, advertises to workflow submit host
 - Results in additional overhead
 - Can take advantage of scheduling policies

Range	Aging Boost
-	15 days
- 11249	5 days
- 3749	0
- 312	0
- 125	0

OLCF *Titan* Scheduling Policy

Dynamic Workflow Assignment

- To accomplish CyberShake study efficiently, must be able to use resources when available
- Job throughput on large clusters varies widely
- Designed workflow metascheduler to submit workflows
 - Split workflows into SGT and post-processing
 - Ability to run each part on separate systems

	BW SGTs	Titan SGTs	Total
BW PP	444	290	734
Titan PP	0	135	135
Total	444	425	869

Systems used for SGT and post-processing workflows

Southern California Earthquake Center

CyberShake Study 18.8 Metrics

- Study conducted over 128 days
- Consumed 6.2 million node-hours (120M core-hours/13,650 core-years)
 - Averaged 2,018 nodes / 38,850 cores
 - Max of 16,219 nodes / 279,984 cores
- Ran 21,220 jobs at USC, 10,308 at Blue Waters, and 7,757 jobs at Titan
- 1.2 PB of data generated
 - 157 TB of data automatically transferred
 - 14.4 TB of final data products staged to USC HPC
- Simulated 203 million seismograms
 - 30.4 billion shaking values

Southern California Earthquake Center

39°

38.5°

38°

37.5°

37°

36.5°

36°

Future Directions

- Moving to next-generation systems
 - OLCF Summit: CyberShake fully verified
 - TACC Frontera: Verification underway
- Enhancing and improving physics in CyberShake simulations
 - Updated rupture generation code with better observational agreement
 - Discontinuous mesh version of wave propagation code
 - Topography

12/5/2019

- Higher frequencies
- Performance optimizations
 - Machine learning to eliminate some events

ations ement

SDSC SAN DIEGO SUPERCOMPUTER CENTER

SC//EC

AN NSF+USGS CENTER

Southern California Earthquake Center

COMPUTING FACILITY

Pegasus