# **Non-ergodic PSHA Using Fully-Deterministic Physics-based Models for Southern California**

Scott Callaghan, Kevin R. Milner, Christine A. Goulet, Bruce E. Shaw, Philip J. Maechling, Kim B. Olsen, Robert W. Graves, Karan Vahi, Ewa Deelman, Thomas H. Jordan, and Yehuda Ben-Zion

2022 SSA Annual Meeting Thursday, April 21, 2022



## CyberShake Platform

• SCEC's 3D physics-based probabilistic seismic 39° hazard analysis (PSHA) platform 38.5 • Earthquake Rupture Forecast (ERF) provides 38° list of relevant events with probabilities 37.5 • 70,000-500,000 events per site 37 36.5 Reciprocity-based approach to simulate 36° 35.5 35° Intensity measures derived from seismograms 34.5° Hazard results from individual sites interpolated 34° with GMPE basemap 33.5 Deterministic simulations to 1 Hz 0.0 0.2 0.4

seismograms



-123°122.5°122°121.5°121°120.5°120°119.5°119°118.5°118°117.5

## Earthquake Rupture Forecast

- List of events to simulate + probabilities
- To date, all CyberShake studies use UCERF2 ERF
  - Derived from empirical data
  - Average of logic tree branches
  - Includes aleatory magnitude uncertainty
- Investigated impact of using deterministic ERF generated with earthquake simulator





### CALIFORNIA AREA EARTHQUAKE PROBABILITIES

| 30-Year Probability * |
|-----------------------|
| >99%                  |
| 94%                   |
| 46%                   |
| 4%                    |
|                       |

\* Probabilities do not include the Cascadia Subduction Zone.



os Angeles

Dieg



- Rate-State Earthquake Simulator
- Physics-loaded multi-cycle simulator
- Simulates hundreds of thousands of years of earthquakes on CA fault system
- Generates full slip-time histories for all events
- Can use as an ERF for CyberShake
  - Catalog provides list of events
  - Uniform probability, 1/(catalog length)



Visualization of 3,000 year RSQSim catalog

## **RSQSim** CyberShake ERF

- Generated 779,523 year catalog, 13.5 million events
  - Discarded first 65kyrs as spinup
  - Selected events M≥6.5 (220,927 events)
  - Same cutoff rule (200 km from site)
- UCERF3 fault surfaces
- Triangular discretization of ruptures, 1 km/side
- Non-uniform hypocenter distribution



## CyberShake Study 21.12

RSQSim ERF

4/28/2022

- 335 sites in Southern California • About 75,000 events per site
- Study performed over 29 days • Used OLCF Summit supercomputer
- 65,500 node-hours used
  - At peak, 46% of Summit
- Synthesized 25.7 million two-component seismograms



Study 21.12 site map



## Study 21.12 Results



4/28/2022

Southern California Earthquake Center

6

### Study 21.12 Hazard Curves



Southern California Earthquake Center

### 4/28/2022



## Study 21.12 comparisons to Study 15.4



Study 21.12 vs ASK2014



### Ratio, Study 21.12/Study 15.4



### 4/28/2022

### Southern California Earthquake Center



8

## Study 21.12b

- Interested in impact of RSQSim rupture modifications
- Adjusted RSQSim frictional parameters
  - Reduced b above 3 km to mimic velocity strengthening layer and reduce nearsurface stress drops
- Generated new catalog, 240 kyr (64,291 selected events)
- Reran CyberShake seismogram synthesis with new catalog
  - Since same rupture geometry, no need to rerun wave propagation

## Study 21.12b Results





### z-score (Standard Deviations) RSQSim 5413 — Standard Normal - - Mean

4/28/2022

### Southern California Earthquake Center

## Study 21.12b Hazard Curves



Study 21.12 (black)

Study 21.12b (blue)



Southern California Earthquake Center

### 4/28/2022





- RSQSim-generated ERFs coupled with CyberShake provide an approach for fully physics-based PSHA
- Ground motion distribution of RSQSim CyberShake closely resembles **GMPEs**
- Inclusion of velocity strengthening layer reduces large ground motions at 2 sec
- Future plans:
  - Look at ground motion radiation patterns and compare to kinematic models
  - Increase rupture surface resolution





















Southern California Earthquake Center





## **USC** Advanced Research Computing Enabling scientific breakthroughs at scale

13