SC

HPC Challenges in Seismology: There's a Whole Lotta Shakin' Goin' On

Scott Callaghan scottcal@usc.edu

Thursday, July 13, 2023 **2023 IHPCSS**

- In 2023 so far:
 - M7-8: 13
 - M8+: 0
- Potential for large societal impact
 - 2023 Turkey (M7.8 & M7.5)
 - 2021 Haiti (M7.1)
 - 2011 Tohoku (M9.1)
- So far, prediction is elusive

35 earthquakes, M2.5+, last 24 hrs, max M5.0

Earthquake Forecasting

- If we can't predict, what can we do?
- Earthquake forecasts
 - Long-term
 - Short-term
- Earthquake early warning

Simulations of individual events

7/13/2023

7/13/2023

7/13/2023

Seismic Hazard

- What ground motions can I expect in the next 50 years?
 - Building engineers
 - Insurance companies
 - Disaster planners
- Answered via Probabilistic Seismic Hazard Analysis (PSHA)
 - Get a list of all possible earthquakes 1.
 - 2. Determine how much shaking each earthquake causes
 - 3. Combine shaking with earthquake probability to generate hazard estimates

CyberShake platform

- CyberShake was developed by SCEC to perform 3D physics-based PSHA
- Uses wave propagation simulations to determine shaking from each earthquake
- To reduce computational cost, utilizes reciprocity
 - 2 simulations per site rather than 1 per event
 - (# of sites) << (# of events)
- Shaking measures derived from seismograms
- Shaking measures combined with probabilities for site and regional hazard

7/13/2023

7/13/2023

Recent Results

- Regional hazard calculation for Southern California
- 95 days of around-the-clock execution
- Used 772,000 node-hours on *Summit*
 - Peak of 73% of the system (3382 nodes)
- 26 million computational tasks run in 28,130 workflow jobs
- 2.5 PB of total data
- Staged 74 TB / 19 M files to long-term storage

Resolved Technical Challenges – pre & post processing

- Additional codes not included in the flow chart
 - Create configuration files
 - Write metadata needed to parse data files
 - Reorder files to be fast in time instead of fast in space
- As we scaled up, each of these became a bottleneck
 - Parallelized them with straightforward MPI
 - Manager process reads in configuration information
 - Broadcasts information to other processes to figure out their work
 - Processes do their work
 - Depending on size of output, either manager aggregates and writes output, or MPI collective I/O
- This simple parallelism reduced runtimes back to noise

Resolved Technical Challenges – Intermediate Files

Southern California Earthquake Center

7/13/2023

a. He simulation

Resolved Technical Challenges – Intermediate Files

Rewrote this stage into MPI manager-worker job

Reduced I/O by 99%

7/13/2023

Enabled 1 Hz calculations

Resolved Technical Challenges – Number of Files

Aggregated files to reduce total number by factor of 85

- Output files relatively small: ~10 Mbps/sec write
- Output data sent to manager process, then written out
 - Reduces filesystem load
 - Reduces challenge of synchronizing files

Resolved Technical Challenges – File Integrity

- Found occasional issues with files
 - Sometimes subtle bugs in the code
 - Sometimes filesystem hiccups
 - Sometimes problems in file transfer (less of an issue now)
- Added sanity checks to our workflow
 - Job to check number of files, NaNs, size of files, etc.
 - Calculate MD5 sums for files which will be archived
- In current study, encountered new exciting errors
 - Problem with OS flushing to disk?
 - Additional checks needed

Resolved Technical Challenges – Automation + 2FA

- Automated job submission is required
 - Most recent CyberShake study ran ~26 million computational tasks
- How do you submit jobs in an automated fashion with 2FA?
 - (Without making the system administrators very angry)
- Workflow tools provide two solutions:
 - Push-based (get work first, then find them nodes)
 - Pull-based (get nodes first, then give them jobs)
- We use both approaches in CyberShake

Resolved Technical Challenges – Automation + 2FA

• Pull-based: get resources first, then 'pull' work onto them

7/13/2023

Southern California Earthquake Center

Push-based: jobs sent when ready Daemon required to set up connection

Remote compute resource

Resolved Technical Challenges – Job Throughput

- Large parallel tasks
 - Our target systems prefer large jobs
 - Using pull-based approach, request 1000 nodes
 - Run 10 100-node tasks on these nodes
 - Better throughput than 10 individual jobs
- Small serial tasks
 - Can't put them in the queue individually
 - Use Pegasus-MPI-Cluster, a workflow tool
 - Runs workflow tasks inside MPI job
 - Great for high throughput or self-contained workflow
 - Push-based

7/13/2023

Range	Aging Boost
- 4608	15 days
2674	5 days
921	0
- 91	0
45	0

OLCF Summit Scheduling Policy

What about the wave propagation code?

- Collaborators continue to enhance with new physics
 - Planning to migrate to faster discontinuous mesh version
 - Will also enable higher-frequency simulations
- Optimizing for new architectures
 - Currently being ported to HIP for AMD GPUs
 - Successfully tested last week on almost full-system *Frontier*
- Value of collaborations and leaning on expertise

7/13/2023

What are my current challenges?

- Improve access to output data
 - So people don't have to email me for the seismograms!
 - Data access tool to be released shortly
 - Seismograms delivered through Globus Collection
- Better database solution
 - We insert shaking metrics into database to support data products
 - Upwards of 12 billion rows (3 TB) for most recent study
 - MySQL performance is poor
 - Looking for alternative approaches
- Reduce storage footprint of seismograms
 - ~200 TB of seismograms from CyberShake various studies
 - Looking at lossy compression: what metrics are needed to evaluate?

What are my future challenges?

- Nonlinearity
 - Rocks don't always exhibit linear response
 - Current reciprocal approach is linear
 - Will need to combine some nonlinear simulations with reciprocity
- Improve reproducibility
 - A few parameters are still hard-coded
 - Common configuration file to track parameters
- GPU versions of additional codes
 - Some systems are requiring GPU codes
 - GPU versions give us greater flexibility (and hopefully greater performance)

7/13/2023

Closing Thoughts

- Your time and resources are limited
 - Evaluate what's interfering with getting science results
 - What will get you the best payoff?
 - May not be typical code optimization
- Incremental improvement is still improvement
- If you're in an earthquake:

Southern California Earthquake Center

Information Sciences Institute

USC Advanced Research Computing Enabling scientific breakthroughs at scale