

How's It Shakin'? Simulating Earthquakes with HPC

International HPC Summer School June 3, 2014

Scott Callaghan Southern California Earthquake Center University of Southern California scottcal@usc.edu

MODERATE	HIGH	VERY HIGH

Earthquakes are worldwide

Earthquakes are worldwide

SOUTHERN CALIFORNIA EARTHQUAKE CENTER

Why such variable impact?

- Earthquakes span a huge range of scales
 - Each magnitude point is 10x displacement, 32x energy
 - M9.0 (Tohoku, Japan) has 790x motion, 23000x energy compared to M6.1 (Christchurch, New Zealand)
- Earth structure strongly affects ground motion
 - Maximum Tohoku ground motion: 2.7g
 - Maximum Christchurch ground motion: 2.2g
 - Christchurch earthquake shallow, in basin
- Building types and infrastructure affect human impact

Southern California Earthquake Center

- Collaboration of 600+ scientists at 60+ institutions
- Major missions:
 - Gather field and experimental data
 - Integrate "ground truth" with simulation results
 - Communicate understanding to society

SCEC Simulations

- Focus on Southern California
- Two main types of SCEC HPC projects
 - Scenario earthquakes:
 What kind of shaking will this one earthquake cause?
 - Seismic hazard:
 What kind of shaking will this one location experience?

Southern California, next 30 years: 95% chance of M6.6+ 70% chance of M7+ 29% chance of M7.5+

Low High Participation Rates M ≥6.7

Seismic Hazard Analysis

- What will peak ground motion be over the next 50 years?
 - Used in building codes, insurance, planning
 - Answered via Probabilistic Seismic Hazard Analysis (PSHA)
 - Communicated with hazard curves and maps

Probability of exceeding 0.1g in 50 yrs ₈

How to Calculate Seismic Hazard

- 1. Pick a location of interest.
- 2. Determine what future earthquakes might happen which could affect that location.
- 3. Estimate the magnitude and probability for each ^{33*} earthquake using "earthquake rupture forecast"

- 4. Determine the shaking caused by each earthquake at the site of interest.
 - Two different strategies, each with pros and cons
- 5. Combine the levels of shaking with probabilities to produce a hazard curve.
- Repeat for many locations for a hazard map.

Option 1: Attenuation Relationships

- Extrapolate from historical data
- Based on what magnitude, how far
- Very quick, but (too?) simple.

1 -83

2

8

2

Mag = 6.0

2

68

10

Distance (Km)

PGA (g)

0.01

Option 2: Physics-Based Approach

- Alternatively, we can use a physical approach to simulate each earthquake
- SCEC does this in the "CyberShake" project
- Requires HPC: more expensive than attenuation approach

Does the approach make a difference?

Simulation Results (N->S)

Simulation Results (S->N)

Physics-based CyberShake approach

- Wave propagation simulation
 - Create 1.5 billion point mesh with material properties
 - Generate Strain Green Tensors across volume
 - Parallel, ~8,000 CPU-hrs

Post-Processing

- Individual earthquake contributions
 - Use "seismic reciprocity" to simulate seismograms for each of ~415,000 earthquakes
 - Loosely-coupled, short-running serial jobs
 - From each seismogram determine peak shaking ("peak spectral acceleration")
- Combine the levels of shaking with probabilities from earthquake rupture forecast to produce hazard curve

Earthquake Early Warning

- Detect earthquake at distance from populated area
- Send signal ahead
- Up to 60 sec warning

- CyberShake seismograms used for training and testing machine learning algorithm
- Influenced EEW system for California

CyberShake workflows

Challenge 1: Strain Green Tensor Code

- 4th order, staggered-grid, finite difference code
- 85% of CyberShake CPU-hours
- Used same SGT code since 2007
 - Readable, easy to use, interfaces with other software
 - Scaling limitations
 - Writes file-per-core, merged in post-processing
 - Synchronous MPI communication
 - Little single-core optimization
- Moved to alternative SCEC community code, AWP-ODC
 - Optimized starting in 2004

AWP-ODC enhancements

- Runtime per timestep of CPU version reduced 98%
- Two enhancements responsible for 82% of improvement
 - Asynchronous communication
 - Single-core optimization (no division, vectorization, loop unrolling, cache blocking, etc.)
- Leads to 100% weak scaling in CyberShake regime

AWP-ODC ported to GPU

- 3D domain decomposition
 - Z-striping good for cache
 - Reduces # of neighbors
- Single-GPU optimizations
- Multi-GPU optimizations
 - Eliminate stress communication

CyberShake workflows

Challenge 2: High Throughput Jobs

- ~837,000 serial jobs per run
 - 0.1 to 60 sec
 - Mostly independent
- Combined seismogram and PSA jobs into one using C wrapper
 - "SeisPSA"
 - Half as many jobs
 - Also eliminates PSA job reading in seismogram file

High Throughput Scheduling

- Workflow tools required to manage the jobs
- Can't put them directly into the queue
 - Schedule can't handle millions of short jobs
 - Scheduler cycle is too slow (5+ minutes)
- Pegasus-mpi-cluster workflow tool (PMC)
- Workflow tools request chunk of cores, PMC manages task scheduling
- MPI wrapper around serial or thread-parallel jobs
 - Master-worker paradigm
 - MPI messaging has low latency

CyberShake workflows

Challenge 3: I/O

- I/O load influenced by:
 - Amount of data
 - Number of reads and writes
 - Number of opens and closes
- Tensor extraction jobs
 - Read 40 GB, then write a subset
 - 40 GB x 7000 jobs = 273 TB of data read
 - Instead, restructure as MPI job
 - Read in 40 GB distributed among processors
 - Write many subsets
 - 40 GB x 6 jobs = 240 GB read = 99.9% improvement

I/O-memory-CPU tradeoff

SeisPSA jobs

- Read earthquake description and tensors
- Write two files (350 bytes, 24 KB)
- Groups of 2 to 1568 SeisPSA jobs share input files

Reduce reads

- Generate earthquake description on the fly from geometry
 - Exchange I/O for memory and CPU time
 - Use memcached library to explicitly cache rupture geometry
- Batch jobs together to reuse tensors
 - Read tensors once, calculate multiple seismograms
- Reduce writes
 - Pegasus-mpi-cluster supports "pipe forwarding"
 - Workers write to pipes, master writes to 60x fewer files

CyberShake workflows

Challenge 4: Lengthy Runs

- Run 1100+ hazard curves (2+ weeks wallclock time)
- High degree of automation required
 - Workflow tools
 - No manual job submission
 - Automatic retries
 - Easy monitoring
 - Database tracks run states
 - Email notifications
 - Data products generated automatically

CyberShake Study 14.2 Metrics

- 1144 hazard curves (4 maps) on NCSA Blue Waters
- 342 hours wallclock time (14.25 days)
- 46,720 CPUs + 225 GPUs used on average
 Peak of 295,040 CPUs, 1100 GPUs
- GPU SGT code 6.5x more efficient than CPU
- 99.8 million jobs executed (81 jobs/second)
 31,463 jobs automatically run in the Blue Waters queue
- On average, 26.2 workflows (curves) concurrently

Future (Science) Directions

- Higher frequencies
 - Buildings are most affected by
 frequency = 10 / (height in floors)
 - Currently at 0.5 Hz, moving to 1 Hz
 - 2x frequency -> 16x computational work

SOUTHERN CALIFORNIA EARTHQUAKE CENTER

Future (Technical) Directions

Improve post-processing

- Currently extraction reads 40 GB of data, writes 690 GB
- At 1 Hz, would read 1 TB, write 17 TB
- Make extraction more clever?
- Remove extraction entirely?
- Coscheduling
 - GPU XK nodes have 1 GPU, 16 CPUs
 - While running SGTs on GPUs, schedule post-processing to CPUs
 - Difficult to explain to workflow tools (2 workflows, 1 job)

Things we wish we knew: Workflow Tools

- Help to:
 - Automate processes
 - Manage data
 - Gather metadata
 - Do more than 1 person can do manually
- CyberShake not possible without them

SOUTHERN CALIFORNIA EARTHQUAKE CENTER

Verification

- Verification
 - Does this code behave as I expect it to? Was it programmed correctly?
- Construct verification test problem
 - Identify small test problem (ideally, automated)
 - Generate reference solution
 - Run after all code modifications, compare to reference
 - If discrepancy is "too much", dive in deeper
 - Can also use to quantify impact of change

Codes Comparison

Software Engineering Best Practices

• Version control

- Can always go back
- Track what code was used with which simulation
- Alternate production and development cycles

 Gives time for both optimization and science results
- Incremental improvement
 - "Premature optimization is the root of all evil."
 Donald Knuth
 - Wait until you have identified a limiting factor
 - Cost/benefit analysis: how much development time for how much performance gain?

