Full-3D Waveform Tomography

Po Chen
LDEO, Columbia University

\&
James Gaherty
LDEO, Columbia University
\&
SCEC CME Collaboration
University of Southern California

Outline

- Problem statement and background
- Nonlinearity, data conditioning, time \& frequency bootstrapping
- Born \& Rytov linearization, generalized data functionals and their Fréchet kernels
- Computational considerations, CPU-hour, disk storage, memory...
- Examples:
- LA basin full-3D tomography
- Canadian Cordillera
- Eastern Eurasia
- Western US
- Discussion \& summary
$s c / / E C$ - 1 -

Linearization

$\chi^{2}(\mathbf{m})=\|\Delta \mathbf{d}(\mathbf{m})\|_{D}+\lambda\|\mathbf{m}\|_{M}$

d: Waveform data in time or frequency domain
$F[\mathbf{m}]$: Two-way 3D elastic/anelastic wave equation
$\Delta \mathbf{d}: \quad \begin{aligned} & u_{s}=\bar{u}-u \\ & \phi_{s}=\bar{\phi}-\phi \quad\left(\bar{u}=e^{\bar{\phi}}, u=e^{\phi}\right)\end{aligned}$
m: 3D in space, smooth or include reflectors

Fourier Diffraction Theorem:

Born $\quad U_{s}(\Lambda) \approx G(\Lambda)\left\{O(\Lambda) * U_{0}(\Lambda)\right\}$
Rytov $F_{\mathrm{x} \rightarrow \Lambda}\left[\phi_{s}(\mathbf{x}) u_{0}(\mathbf{x})\right] \approx G(\Lambda)\left\{O(\Lambda) * U_{0}(\Lambda)\right\}$

To Cover the Spectrum of the Object

- Transmission + Reflection
- early arrivals \rightarrow late arrivals
- Angular diversity
- large offsets \rightarrow small offsets
- Frequency diversity
- low frequency \rightarrow high frequency

$$
\chi^{2}=\left\|u^{\text {data }}-u^{\text {model }}\right\|_{\mathrm{L} 2}
$$

(b)

m

Bunks et al. 1995

$50 \sim 500 \mathrm{~Hz}$

Ray travel-time

Ray \& (250 ~ 500 Hz)

Cross-well transmission waveform tomography (Pratt et al. 2002)

Resolution Limit of Ray Traveltime Tomography

- error in physics: infinite-frequency assumption for finite-frequency data
- In-complete information: only traveltime, not complete waveform

Resolution limit: ~ size of the first Fresnel zone

$$
\sqrt{L \lambda}
$$

Williamson, 1991

Forward-scattering and Back-scattering

Coherent interference among incident and scattered waves

Summation of scattered waves

Wu 1989

Validity Conditions of Born and Rytov Approximations

Chernov 1960; Tatarskii, 1971; Ishimaru, 1978;
Wu 1989; Kak \& Slaney 1999;

Generalized Data Functionals and Exact Fréchet Kernels

Data functional:

$$
d_{i n}^{s r}=D_{n}\left[u_{i}^{s}\left(\mathbf{x}_{r}, t\right), \tilde{u}_{i}^{s}\left(\mathbf{x}_{r}, t\right)\right]
$$

Seismogram perturbation kernel:

$$
\delta d_{i n}^{s r}=\int d t \underbrace{J_{i n}^{s r}(t)}_{i n} \delta u_{i}^{s}\left(\mathbf{x}_{r}, t\right)
$$

Fréchet kernel:

$$
K_{d_{i n}^{s r}}^{c_{j k l m}}(\mathbf{x})=-\int d t \int d \tau J_{i n}^{s r}(t) \partial_{k} \underbrace{G_{j i}\left(\mathbf{x}, t-\tau ; \mathbf{x}_{r}\right)}_{\text {Receiver Green Tensor }} \partial_{l} u_{m}^{s}(\mathbf{x}, \tau)
$$

- Differential Waveform:

$$
\begin{gathered}
d_{i n}^{s r}=u_{i}^{s}\left(\mathbf{x}_{r}, t_{n}\right)-\tilde{u}_{i}^{s}\left(\mathbf{x}_{r}, t_{n}\right) \\
J_{i n}^{s r}(t)=\delta\left(t-t_{n}\right)
\end{gathered}
$$

Born validity condition: $\omega_{0} \Delta T_{i n}^{s r} \ll 1$

SC//EC

- Broadband cross-correlation travel-time:

$$
d_{i n}^{s r}=\Delta T_{i n}^{s r} \quad J_{i n}^{s r}(t)=-\frac{\partial_{t} u_{i}^{s}\left(\mathbf{x}_{r}, t\right)\left[H\left(t-t_{n}\right)-H\left(t-t_{n}^{\prime}\right)\right]}{\int_{t_{n}}^{t_{n}^{\prime}}\left|\partial_{t} u_{i}^{s}\left(\mathbf{x}_{r}, t\right)\right|^{2} d t}
$$

(b)

Luo \& Schuster 1991; Dahlen et al. 2000

- Generalized seismological data functionals (GSDF):

$$
\bar{u}(\omega)=u(\omega) \exp \left[i \omega \delta \tau_{\mathrm{p}}(\omega)-\omega \delta \tau_{\mathrm{q}}(\omega)\right]
$$

Exact Seismogram Perturbation Kernels

 for Generalized Data Functionals
J is also compact in frequency domain

Fréchet Kernels for Generalized
Data Functionals (K_{α} in half-space)

Computation

Disk Storage \Leftrightarrow CPU-Hour

The Hessian

For 3D problems, 1 GN ~ 15-30 CG

- Misfit functional (least-squares):

$$
\chi^{2}(\mathbf{m}, \tilde{\mathbf{m}})=\frac{1}{2} \sum_{s=1}^{N_{s}} \sum_{r=1}^{N_{r}} \sum_{i, n}\left|d_{i n}^{s r}(\mathbf{m}, \tilde{\mathbf{m}})\right|^{2}
$$

- Misfit functional gradient:

$$
K_{\chi^{2}}^{c_{j l l m}}(\mathbf{x})=-\sum_{s} \int d \tau \partial_{l} u_{m}^{s}(\mathbf{x}, \tau) \partial_{k}\left[u_{j}^{s}\right]^{+}(\mathbf{x},-\tau)
$$

- Adjoint source field:

$$
\left[f_{i}^{s}\right]^{+}(\mathbf{x}, t)=\sum_{r n} J_{i n}^{s r}(-t) d_{i n}^{s r} \delta\left(\mathbf{x}-\mathbf{x}_{r}\right)
$$

- Adjoint wave field:

$$
\left[u_{j}^{s}\right]^{+}(\mathbf{x}, \tau)=\int d t \sum_{r i n} G_{j i}\left(\mathbf{x}, \tau-t ; \mathbf{x}_{r}\right) J_{i n}^{s r}(-t) d_{i n}^{s r}
$$

- 2D example (wave-equation travel-time tomography using adjoint method):

Tape et al. 2007

- Data functional Fréchet kernel:

$$
K_{d_{i n}^{s l}}^{\left.c_{j l l} / \mathbf{x}\right)}=-\int d t \int d \tau J_{i n}^{s r}(t) \partial_{k} G_{j i}\left(\mathbf{x}, t-\tau ; \mathbf{x}_{r}\right) \partial_{l} u_{m}^{s}(\mathbf{x}, \tau)
$$

- Relation between misfit functional gradient and data functional Fréchet kernel :

$$
K_{\chi^{2}}^{\mathrm{m}}(\mathbf{x})=\sum_{\text {srin }} d_{i n}^{s r} K_{d_{i n}^{r}}^{\mathrm{m}}(\mathbf{x})
$$

- Hessian:

$$
\mathbf{H}=\nabla_{\tilde{\mathrm{m}}} \nabla_{\check{\mathrm{m}}} \chi^{2}=\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{d}}^{-1} \mathbf{A}+\mathbf{C}_{\mathrm{m}}^{-1}+\left(\nabla_{\check{\mathrm{m}}} \mathbf{A}\right)^{\mathrm{T}} \mathbf{C}_{\mathrm{d}}^{-1} \mathbf{d}
$$

- Normal equation:

$$
\left[\begin{array}{c}
\mathbf{C}_{\mathrm{d}}^{-1 / 2} \mathbf{A} \\
\mathbf{C}_{\mathrm{m}}^{-1 / 2}
\end{array}\right] \delta \mathbf{m}=\left[\begin{array}{c}
\mathbf{C}_{\mathrm{d}}^{-1 / 2} \mathbf{d} \\
0
\end{array}\right]
$$

Computational Cost Comparison

Cost	SI method	$\mathrm{AW}-\mathrm{CG}^{a}$
Storage requirement	$3 N_{r} N_{V} N_{T}$	N_{V}
Number of simulations	$3 N_{r}+N_{s}$	$6 N_{s}$
Number of time integrations	$2 N_{t} N_{V} N_{u}$	$2 N_{V} N_{s}$
I/O cost	$N_{u} N_{T} N_{V}$	$2 N_{s} N_{V}$
Requires solving a linear system?	Yes	No
Optimization algorithm	Gauss-Newton	Coniugate-Gradient
Number of iterations needed to	1	$15-30$
\quad match one Gauss-Newton step		

For pre-stack reverse-time migration $3 N_{S}$ simulations, N_{V} storage, or $2 N_{S}$ simulations, $N_{V} N_{T}$ storage

Difficulties of the FrequencyDomain Approach

- Time-domain data conditioning (computational cost proportional to number of frequencies)
- Memory expensive for large 3D problems (L, U matrices not very sparse)
- Low parallel efficiency of LU factorization algorithms

Examples

$S C / / E C$.

Application to LA Basin

LAB Inversion Computational Cost For One GN Iteration

Number of stations N_{r}	48
Number of earthquakes N_{s}	67
Number of seismograms N_{u}	2000
Number of FD simulations $3 N_{r}+N_{s}$	211
Simulation grid spacing, time interval	$200 \mathrm{~m}, 0.01 \mathrm{~s}$
Simulation grid points N_{V}, time steps N_{T}	36140440,6000
Number of CPUs	128
Total CPU time per iteration	62000 CPU-hours
Total disk space $3 N_{r} N_{V} N_{T}$	24 TB

Rapid CMT Inversion Using Waveforms computed in a 3D Earth Structural Model

Resolving Fault-plane-ambiguity for Small Earthquakes

A new representation of the two nodal planes with different probabilities

Full-3D Fréchet Kernel Examples

(a)

(b) $\left|\begin{array}{lll}1: \% & \cdots & 1 \\ 1 & \ldots & 1\end{array}\right|$

(c)

(d) $\left|\begin{array}{r}- \\ 1 \\ \hdashline-1\end{array}\right|$

K_{α}

$\beta_{0}+\delta \beta$

$\begin{array}{ccccc}0.54 \\ 0 & \Delta & \Delta & & \\ 0 & 0 & \Delta & \Delta & 0.5\end{array}$

$-\frac{18}{516}$

The Canadian Cordillera

Lithoprobe

Refraction/reflection (Cook et al. 2005)

Basement below the cordillera is old.

$s C / / E C$

Frequency-dependent Full-wave Kernels

sc/ec

Eastern Eurasia

Dalton \& Ekström, 2006

β and Q_{μ} Joint Inversion Using Surface Wave Phase and Amplitude Anomalies

$$
\begin{gathered}
C_{j k m}=\left\{\kappa(\omega)\left[1+i Q_{k}^{-1}(\omega)\right]-\frac{2}{3} \mu(\omega)\left[1+i Q_{\mu}^{-1}(\omega)\right]\right\} \delta_{j k} \delta_{m n} \\
+\mu(\omega)\left[1+i Q_{\mu}^{-1}(\omega)\right]\left(\delta_{j} \delta_{k n}+\delta_{j m} \delta_{k k}\right)+\gamma_{j k m},
\end{gathered}
$$

sC/EC

Western US

Silver \& Holt, 2002

Hartog \& Schwartz, 2001

Scenario B -- Southern California?

三二-

USArray

Double-Difference GSDF

Frequency-dependent Phase-delay Maps

Discussion \& Summary

Wave-equation Migration Velocity Analysis

$$
\begin{gathered}
\chi^{2}(\mathbf{m})=\|\Delta I(\mathbf{m})\|_{I}+\lambda\|\mathbf{m}\|_{m} \\
I(\mathbf{m})=\sum_{s} u^{s} \otimes\left[u^{s}\right]^{+} \\
\delta I(\mathbf{m})=\sum_{s} \delta u^{s} \otimes\left[u^{s}\right]^{+}+\sum_{s} u^{s} \otimes\left\{\delta \mathbf{G}^{\mathbf{T}} *\left[f^{s}\right]^{+}\right\} \\
+\sum_{s} u^{s} \otimes\left\{\mathbf{G}^{\mathbf{T}} * \delta\left[f^{s}\right]^{+}\right\} \\
\delta I(\mathbf{m})=\mathbf{K}_{\mathbf{m}}^{I} \cdot \delta \mathbf{m} \\
\Delta I:\left\{\begin{array}{l}
I-I_{0} \\
\Psi-\Psi_{0}\left(I=e^{\Psi}, I_{0}=e^{\Psi_{0}}\right) \quad ?
\end{array}\right.
\end{gathered}
$$

Sava \& Biondi 2004

(b)
(c)

(a)

$$
\begin{aligned}
I & =K(\rho)\left[I_{0}\right] \\
\Delta I & =I-I_{0} \\
\Delta I & \left.\approx K^{\prime}\right|_{\rho=1}\left[I_{0}\right] \Delta \rho \\
I_{0} \Delta \Psi & \left.\approx K^{\prime}\right|_{\rho=1}\left[I_{0}\right] \Delta \rho
\end{aligned}
$$

Stolt residual migration
Difference image perturbation
Linearized image perturbation
Image phase perturbation

Broadband Phase-shift Kernel

Xie \& Yang (2007),
Modeling and Imaging Laboratory (MILAB), UC Santa Cruz

$$
\begin{aligned}
\delta I^{s}\left(\mathbf{x}_{I}\right)=\delta u^{s} \otimes\left[u^{s}\right]^{+} & +u^{s} \otimes \\
+ & \left\{\delta \mathbf{G}^{\mathbf{T}} *\left[f^{s}\right]^{+}\right\} \\
+ & \left\{\mathbf{G}^{\mathbf{T}} * \delta\left[f^{s}\right]^{+}\right\}
\end{aligned}
$$

Summary

- Combine time-bootstrapping with frequencybootstrapping.
- Use Rytov linearization for velocity tomography, Born linearization for impedance mapping.
- Construct the Hessian when source number is not much less than receiver number.
- Full-3D two-way wave equation accounts for complete physics.

