

Full-3D Waveform Tomography

Po Chen LDEO, Columbia University & James Gaherty LDEO, Columbia University Š SCEC CME Collaboration University of Southern California

Outline

- Problem statement and background
- Nonlinearity, data conditioning, time & frequency bootstrapping
- Born & Rytov linearization, generalized data functionals and their Fréchet kernels
- Computational considerations, CPU-hour, disk storage, memory...
- Examples:
 - LA basin full-3D tomography
 - Canadian Cordillera
 - Eastern Eurasia
 - Western US
- Discussion & summary

Linearization

$$\chi^{2}(\mathbf{m}) = \left\| \Delta \mathbf{d}(\mathbf{m}) \right\|_{D} + \lambda \left\| \mathbf{m} \right\|_{M}$$

d: Waveform data in time or frequency domain

F[**m**]: Two-way 3D elastic/anelastic wave equation

 $\Delta \mathbf{d}$:

$$u_{s} = \overline{u} - u$$

$$\phi_{s} = \overline{\phi} - \phi \quad (\overline{u} = e^{\overline{\phi}}, u = e^{\phi})$$

m: 3D in space, smooth or include reflectors

To Cover the Spectrum of the Object

- Transmission + Reflection
 - early arrivals \rightarrow late arrivals
- Angular diversity
 - large offsets \rightarrow small offsets
- Frequency diversity
 - low frequency \rightarrow high frequency

$$\chi^2 = ||u^{data} - u^{model}||_{L2}$$

Ray travel-time

250 ~ 500 Hz

Ray & (250 ~ 500 Hz)

Cross-well transmission waveform tomography (Pratt et al. 2002)

Resolution Limit of Ray Traveltime Tomography

- error in physics: infinite-frequency assumption for finite-frequency data
- In-complete information: only traveltime, not complete waveform

Resolution limit: ~ size of the first Fresnel zone

Williamson, 1991

Forward-scattering and Back-scattering

Wu 1989

Validity Conditions of Born and Rytov Approximations

Chernov 1960; Tatarskii, 1971; Ishimaru, 1978; Wu 1989; Kak & Slaney 1999;

Generalized Data Functionals and Exact Fréchet Kernels

Data functional:

$$d_{in}^{sr} = D_n \big[u_i^s(\mathbf{x}_r, t), \ \tilde{u}_i^s(\mathbf{x}_r, t) \big]$$

Seismogram perturbation kernel:

$$\delta d_{in}^{sr} = \int dt J_{in}^{sr}(t) \delta u_i^s(\mathbf{x}_r, t)$$

Fréchet kernel:

$$K_{d_{in}^{sr}}^{c_{jklm}}(\mathbf{x}) = -\int dt \int d\tau J_{in}^{sr}(t) \,\partial_k \overline{G_{ji}(\mathbf{x}, t - \tau; \mathbf{x}_r)} \partial_l u_m^s(\mathbf{x}, \tau)$$
Receiver Green Tensor

• Differential Waveform:

$$d_{in}^{sr} = u_i^s(\mathbf{x}_r, t_n) - \tilde{u}_i^s(\mathbf{x}_r, t_n)$$

$$J_{in}^{sr}(t) = \delta(t-t_n)$$

Born validity condition: $\omega_0 \Delta T_{in}^{sr} \ll 1$

• Broadband cross-correlation travel-time:

$$d_{in}^{sr} = \Delta T_{in}^{sr} \qquad J_{in}^{sr}(t) = -\frac{\partial_t u_i^s(\mathbf{x}_r, t) [H(t - t_n) - H(t - t'_n)]}{\int_{t_n}^{t'_n} |\partial_t u_i^s(\mathbf{x}_r, t)|^2 dt}$$

Luo & Schuster 1991; Dahlen et al. 2000

• Generalized seismological data functionals (GSDF):

$$\overline{u}(\omega) = u(\omega) \exp\left[i\omega\delta\tau_{\rm p}(\omega) - \omega\delta\tau_{\rm q}(\omega)\right]$$

J is also compact in frequency domain

Fréchet Kernels for Generalized Data Functionals (K_{α} in half-space)

Computation

Disk Storage ⇔ CPU-Hour

For 3D problems, 1 GN ~ 15-30 CG

• Misfit functional (least-squares):

$$\chi^{2}(\mathbf{m}, \tilde{\mathbf{m}}) = \frac{1}{2} \sum_{s=1}^{N_{s}} \sum_{r=1}^{N_{r}} \sum_{i,n} \left| d_{in}^{sr}(\mathbf{m}, \tilde{\mathbf{m}}) \right|^{2}$$

• Misfit functional gradient:

$$K_{\chi^2}^{c_{jklm}}(\mathbf{x}) = -\sum_s \int d\tau \,\partial_l u_m^s(\mathbf{x},\tau) \partial_k \left[u_j^s\right]^+(\mathbf{x},-\tau)$$

• Adjoint source field:

$$\left[f_i^s\right]^+(\mathbf{x},t) = \sum_{rn} J_{in}^{sr}(-t) d_{in}^{sr} \delta(\mathbf{x} - \mathbf{x}_r)$$

• Adjoint wave field:

$$\left[u_{j}^{s}\right]^{+}(\mathbf{x},\tau) = \int dt \sum_{rin} G_{ji}(\mathbf{x},\tau-t;\mathbf{x}_{r}) J_{in}^{sr}(-t) d_{in}^{sr}$$

• 2D example (wave-equation travel-time tomography using adjoint method):

Tape et al. 2007

• Data functional Fréchet kernel:

$$K_{d_{in}^{sr}}^{c_{jklm}}(\mathbf{x}) = -\int dt \int d\tau J_{in}^{sr}(t) \,\partial_k G_{ji}(\mathbf{x}, t-\tau; \mathbf{x}_r) \,\partial_l u_m^s(\mathbf{x}, \tau)$$

• Relation between misfit functional gradient and data functional Fréchet kernel :

$$K_{\chi^2}^{\mathbf{m}}(\mathbf{x}) = \sum_{srin} d_{in}^{sr} K_{d_{in}^{sr}}^{\mathbf{m}}(\mathbf{x})$$

• Hessian:

$$\mathbf{H} = \nabla_{\tilde{\mathbf{m}}} \nabla_{\tilde{\mathbf{m}}} \chi^2 = \mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{d}}^{-1} \mathbf{A} + \mathbf{C}_{\mathrm{m}}^{-1} + \left[(\nabla_{\tilde{\mathbf{m}}} \mathbf{A})^{\mathrm{T}} \mathbf{C}_{\mathrm{d}}^{-1} \mathbf{d} \right]$$

• Normal equation:

$$\begin{bmatrix} \mathbf{C}_{d}^{-1/2} \mathbf{A} \\ \mathbf{C}_{m}^{-1/2} \end{bmatrix} \delta \mathbf{m} = \begin{bmatrix} \mathbf{C}_{d}^{-1/2} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$$

Computational Cost Comparison

Cost	SI method	AW–CG ^a
Storage requirement	$3N_rN_VN_T$	N_V
Number of simulations	$3N_r + N_s$	$6N_s$
Number of time integrations	$2N_t N_V N_u$	$2 N_V N_s$
I/O cost	$N_u N_T N_V$	$2N_sN_V$
Requires solving a linear system?	Yes	No
Optimization algorithm	Gauss-Newton	Conjugate-Gradient
Number of iterations needed to match one Gauss–Newton step	1	15-30

For pre-stack reverse-time migration $3N_S$ simulations, N_V storage, or $2N_S$ simulations, N_VN_T storage

Difficulties of the Frequency-Domain Approach

- Time-domain data conditioning (computational cost proportional to number of frequencies)
- Memory expensive for large 3D problems (L, U matrices not very sparse)
- Low parallel efficiency of LU factorization algorithms

Examples

Application to LA Basin

LAB Inversion Computational Cost For One GN Iteration

Number of stations N_r	48
Number of earthquakes N_s	67
Number of seismograms N_u	2000
Number of FD simulations $3N_r + N_s$	211
Simulation grid spacing, time interval	200 m, 0.01 s
Simulation grid points N_V , time steps N_T	36 140 440, 6000
Number of CPUs	128
Total CPU time per iteration	62 000 CPU-hours
Total disk space $3N_rN_VN_T$	24 TB

Rapid CMT Inversion Using Waveforms computed in a 3D Earth Structural Model

Resolving Fault-plane-ambiguity for Small Earthquakes

A new representation of the two nodal planes with different probabilities

Full-3D Fréchet Kernel Examples

 $\beta_0 + \delta \beta$ 33.8 34 34.2 33.8 34 34.2 -117.5 -118.5 -118 -118.5-118 -117.5

δβ/βο

The Canadian Cordillera

Lithoprobe

Frequency-dependent Full-wave Kernels

Eastern Eurasia

β and Q_{μ} Joint Inversion Using Surface Wave Phase and Amplitude Anomalies

Western US

Silver & Holt, 2002

Hartog & Schwartz, 2001

Scenario A Pacific	No S/	rthern AF	California?
Upper crust	Ф		
Strong LC	Ψ	$ \odot$	
Mantle			• FP Fabric
		2	EW Fabric
Scenario B	Sou	thern	California?
Upper crust	\oplus	$\overline{\mathbf{O}}$	
Weak LC? ~	\sim	$\overline{\ }$	
Weak UM? \	\sim	\sim	✓ No Fabric?

USArray

Double-Difference GSDF

Frequency-dependent Phase-delay Maps

Discussion & Summary

Wave-equation Migration Velocity Analysis

 $\chi^{2}(\mathbf{m}) = \left\| \Delta I(\mathbf{m}) \right\|_{I} + \lambda \left\| \mathbf{m} \right\|_{m}$ $I(\mathbf{m}) = \sum_{s} u^{s} \otimes [u^{s}]^{+}$ $\delta I(\mathbf{m}) = \sum_{s} \delta u^{s} \otimes [u^{s}]^{+} + \sum_{s} u^{s} \otimes \left\{ \delta \mathbf{G}^{\mathrm{T}} * [f^{s}]^{+} \right\}$ $+ \sum_{s} u^{s} \otimes \left\{ \mathbf{G}^{\mathrm{T}} * \delta [f^{s}]^{+} \right\}$

$$\delta I(\mathbf{m}) = \mathbf{K}_{\mathbf{m}}^{I} \cdot \delta \mathbf{m}$$

$$\Delta I : \begin{cases} I - I_0 \\ \Psi - \Psi_0 \ (I = e^{\Psi}, I_0 = e^{\Psi_0}) \end{cases} ?$$

Broadband Phase-shift Kernel

Xie & Yang (2007), Modeling and Imaging Laboratory (MILAB), UC Santa Cruz

$$\delta I^{s}(\mathbf{x}_{I}) = \delta u^{s} \otimes [u^{s}]^{+} + u^{s} \otimes \left\{ \delta \mathbf{G}^{T} * [f^{s}]^{+} \right\}$$
$$+ u^{s} \otimes \left\{ \mathbf{G}^{T} * \delta [f^{s}]^{+} \right\}$$

Summary

- Combine time-bootstrapping with frequency-bootstrapping.
- Use Rytov linearization for velocity tomography, Born linearization for impedance mapping.
- Construct the Hessian when source number is not much less than receiver number.
- Full-3D two-way wave equation accounts for complete physics.