

An Overview of the SCEC CyberShake Project

Thomas H. Jordan

University of Southern California

CyberShake co-developers: S. Callaghan, R. Graves, F. Wang, K. Olsen, K. Milner, and P. Maechling, E.-J. Lee, P. Chen

Meeting of the SCEC Committee for the Utilization of Ground Motion Simulations

03 Nov 2014

Working Group on California Earthquake Probabilities (2007)

Uniform California Earthquake Rupture Forecast (UCERF2)

Hazard Curve:

 Shaking intensity: Peak Ground Acceleration (PGA)

• Interval: 50 years

Site: Downtown LA

$$P(S_k)$$

$$P(Y_n \mid S_k)$$

$$P(Y_n)$$

National Seismic Hazard Map

PGA (%g) with 2% Probability of Exceedance in 50 years

NGA (2008) Attenuation Relations used in National Seismic Hazard Maps

ShakeOut Scenario M7.8 Earthquake on Southern San Andreas Fault

CyberShake Model: Physics-Based PSHA

KFR = kinematic fault rupture model

AWP = anelastic wave propagation model

NSR = nonlinear site response

CyberShake Model: Physics-Based PSHA

- Sites:
 - 283 sites in the greater Los Angeles region
- Ruptures:
 - All UCERF2 ruptures within 200 km of site (~14,900)
- Rupture variations:
 - ~415,000 per site using Graves-Pitarka pseudo-dynamic rupture model
- Seismograms:

NGA (2008) Attenuation Relations used in National Seismic Hazard Maps

CyberShake Platform: Physics-Based PSHA Essential ingredients

- 1. Extended earthquake rupture forecast
 - probabilities of all fault ruptures (e.g., UCERF2)
 - conditional hypocenter distributions for rupture sets
 - conditional slip distributions from pseudo-dynamic models
- 2. Three-dimensional models of geologic structure
 - large-scale crustal heterogeneity
 - sedimentary basin structure
 - near-surface properties ("geotechnical layer")
- from SCEC CVMs
- 3. Ability to compute large suites (> 108) of seismograms
 - efficient anelastic wave propagation (AWP) codes
 - reciprocity-based calculation of ground motions

SC/EC

Working Group on California Earthquake Probabilities (2007)

Uniform California Earthquake Rupture Forecast (UCERF2)

CyberShake Rupture Models

Conditional Slip Distribution Graves-Pitarka Pseudo-Dynamic Rupture Models

SCEC Community Velocity Models (CVMs)

Basin Structures of Three SCEC CVMs

 Z_{2500} : iso-velocity surfaces at $V_{\rm S} = 2.5~{\rm km/s}$

Rapid Simulation of Large Rupture Ensembles Using Seismic Reciprocity

- To account for source variability requires very large sets of simulations
 - 14,900 ruptures from UCERF2; 415,000 rupture variations
- Ground motions need only be calculated at much smaller number of surface sites to produce hazard map
 - 283 in LA region, interpolated using empirical attenuation relations
- Use of reciprocity reduces CPU time by a factor of ~1,000

Strain Green Tensor (SGT)

M sources to N sites requires M simulations
M sources to N sites requires 2N or 3N simulations

CyberShake Workflow

CyberShake Hazard Map Interpolation

Campbell & Borzognia (2008) GMPE with CGS soil map

CyberShake (2011) differences

CyberShake (2011) map

3-s Spectral Acceleration (in g) at Probability of Exceedance = 2% in 50 yr

Comparison of 1D and 3D CyberShake Models for the Los Angeles Region

- 1. lower near-fault intensities due to 3D scattering
- 2. much higher intensities in near-fault basins
- 3. higher intensities in the Los Angeles basins
- 4. lower intensities in hard-rock areas

Seismological Hierarchy of CyberShake

$$G(r, k, x, s) = \ln Y(r, k, x, s)$$

- Site set: $r \bowtie R$
 - 283 sites in the greater Los Angeles region
 - Elastic structures: BBP-1D, CVM-S4, CVM-H11, or CVM-S4.26
- Rupture set: $k \times K(r)$
 - All UCERF2 ruptures within 200 km of site (~7000 total)
- Conditional hypocenter distribution: $x \mid \mathbb{X} \mid X(r, k)$
 - Uniform distribution along fault strike with $\Delta x \approx 20 \text{ km}$
- Conditional slip distribution: $S \times S(r, k, x)$
 - Pseudo-dynamic rupture models of Graves & Pitarka (2007, 2010)
 - Approximately 415,000 rupture variations per site, 235 million synthetic seismograms per model (2 horizontal components)

CHD and CSD define the "Extended ERF"

Averaging-Based Factorization

(Wang & Jordan, BSSA, 2014)

Representation of excitation functionals

Expected shaking intensities constructed by averaging over slip variations (s), hypocenters (x), sources (k), and sites (r)

$$G(r,k,x,s) = A + B(r) + C(r,k) + D(r,k,x) + E(r,k,x,s)$$
 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$
 $level \quad site \qquad path \qquad directivity \qquad slip complexity \qquad effect \qquad effect \qquad effect$

Representation of excitation variance

$$Var[G] = \overline{\sigma}_{G}^{2} \equiv \left\langle [G(r, k, x, s) - A]^{2} \right\rangle_{S, X, K, R}$$

$$= \sigma_{B}^{2} + \left\langle \sigma_{C}^{2}(r) \right\rangle_{R} + \left\langle \sigma_{D}^{2}(r, k) \right\rangle_{K, R} + \left\langle \sigma_{E}^{2}(r, k, x) \right\rangle_{X, K, R}$$

$$\equiv \sigma_{B}^{2} + \overline{\sigma}_{C}^{2} + \overline{\sigma}_{D}^{2} + \overline{\sigma}_{E}^{2}$$

ABF Variance Analysis of the CyberShake Model

Importance of Reducing Aleatory Variability

NGA(2014)-CyberShake Hazard Curve Comparisons

Site LADT (Los Angeles)

CyberShake Hazard Maps from Four CVMs

Dependence of Basin Effects on Velocity Structures

(SA corrected for V_{S30} using BA08)

SC/EC

CVM-S4.26

Full-3D tomography model of Southern California crustal structure

- CVM-S4 starting model
- 26th iterate of a full-3D tomographic (F3DT) inversion procedure (Lee et al., 2013).
- Data sets comprise ~ 550,000 differential waveform measurements at f ≤ 0.2 Hz
 - 38,000 earthquake seismograms
 - 12,000 ambient-noise Green functions
- Nonlinear iterative process involved two methods:
 - adjoint-wavefield (AW-F3DT)
 - scattering-integral (SI-F3DT)

Full-3D Waveform Tomography

(Lee, Chen, Jordan, Maechling, Denolle & Beroza, JGR, 2014)

LARSE Profiles

03/17/14 Encino Earthquake (M4.4)

(Taborda et al., 2014)

Southern California Earthquake Center

SC/EC CyberShake: Initiative to Compute a Statewide Physics-Based Hazard Model

- Extend CyberShake models to 1400 sites across California
 - Develop statewide Unified Community Velocity Model (UCVM)
 - Compute site response to 1 Hz deterministic,
 10 Hz stochastic
- Couple time-dependent UCERF3 to CyberShake
 - Provide frequently updated time-dependent seismic hazard maps
- Extend CSEP to prospectively test ground motion forecasts against observations throughout California

Statewide CyberShake

- Computational requirements for 1 Hz deterministic, 10 Hz stochastic:
 - Number of jobs: 23.2 billion
 - Storage: 2800 TB seismograms
 - Computer hours: 392 million

