SCEC-ERI Summer School on Earthquake Science September 28-October 2, 2014 Embassy Suites, Mandalay Beach Hotel, Oxnard, CA

INTEGRATED EARTHQUAKE SIMULATION Program Architecture and Plugged-in Components

M. HORI

Earthquake Research Institute, UTokyo Advanced Institute of Computational Science, RIKEN

CONTENTS

- Integrated Earthquake Simulation
 - Examples of seamless simulations
 - System computing that uses numerous components
- Plugged-in Components
 - FEM for ground motion analysis
 - SDOF for seismic structure response analysis
 - PDS for failure analysis
 - MAS for mass evacuation analysis

EARTHQUAKE DISASTER ASSESMENT

CURRENT empirical

FUTURE simulation

OVERVIEW OF IES

Target Area

Target Area

Result

Fiber Model (high-rises are not included)

steel bar deterioration considered

steel bar deterioration not considered

MASS EVACUATION

Kochi City

- large population
- road network and rivers
- visitors

Countermeasures for Tsunami

- tsunami shelter
- retrofitting infrastructures
- · fast information delivery
- education

- official agent which forces evacuation
- agent which does not start evacuation
- agent which starts evacuation

Evacuation guiding/forcing

- official agent that finds agents which do not start evacuation and lets/makes it start evacuation
- determination of guiding/forcing official number, considering local road network and composition of resident characteristic

SYSTEM COMPUTING

- Software Engineering
 - One generous programmer vs system engineer group
 - Quality control/guarantee of software: V & V
- Integrated System
 - Transparency for developers of generations
 - Robustness error minimization
 - Extention-ability reuse of modules

IES employs *object-oriented programming* that uses object hierarchy and *aspect-oriented programming* that uses template.

IES


```
template class<S> void Analyze( S &x )
{
   double acc=x, vel=0.;
   while( ... ) vel += x dt;
   ...
} - algorithm -
```

```
template<class C1, class C2>
class X : public C1, public C2
{
   public:
   void Analyze( ... );
}
   - class -
```

object hierarchy

template

FINITE ELEMENT METHOD

- Standard Numerical Method for Engineering
 - Linear/non-linear PDF in domain of complicated configuration
 - Utilization of smaller grain modules
 - Development of good commercial packages
- Research on New Features
 - Dynamic problems
 - Failure problems: 2D to 3D
 - Materials of complicated constitutive relations

SEISMIC STRUCTURE RESPONSE

Lagrangian Formulation

$$L[\boldsymbol{v},\boldsymbol{\varepsilon}] = \int \uparrow \boldsymbol{v} \cdot \boldsymbol{v} - 1/2 \, \boldsymbol{\varepsilon} \cdot \boldsymbol{c} \cdot \boldsymbol{\varepsilon} \, \mathrm{d} v \qquad (\boldsymbol{v},\boldsymbol{\varepsilon}) = (\boldsymbol{u}, \, \mathrm{sym}\{\nabla \boldsymbol{u}\})$$

Rigid-body Motion and Response

$$u(x,t)=g(t)+u r(x,t)$$

Smart Approximation

$$\boldsymbol{u} \uparrow r(\boldsymbol{x}, t) = U(t) \boldsymbol{A}(\boldsymbol{x})$$

$$L=1/2 MU \uparrow 2-1/2 KU \uparrow 2+GU \qquad (M,K)=(\int \uparrow = 1/2 \rho \mathbf{A} \cdot \mathbf{A} dv , \int \uparrow = 1/2 \nabla \mathbf{A} \cdot \mathbf{A} dv)$$

$$\mathbf{A}: \mathbf{c}: \nabla \mathbf{A} dv)$$

SMART SOLUTION

rigid-body motion response as relative deformation

 $L[g+u \uparrow r, \varepsilon \uparrow r]$

smart approximation

 $L[\boldsymbol{g}+U\boldsymbol{A},U\nabla\boldsymbol{A}]$

URBAN AREA MODEL

AUTOMATED MODEL CONSTRUCTION

Two Major Difficulties

- Cognition of floor configuration using plural polygons
- Presumption of floor arrangement using floor configuration

rectangular of equal width and breadth grid-wise arrangement of column

current compromise

TEMPLATE FITTING

polygon

rotation, stretch, mirror-image

pattern

template set

rotation, stretch, mirror-image

template flame

COGNITION OF PLURAL POLYGONS

- Two methodologies
 - B-GRID

cast polygon into Boolean grid

Polygon Algebra manipulate polygons' configuration

addition

	B-GRID	POLYGON ALGBRA
coding	easy	difficult
robustness	high	low
error	grid size dependence	principally zero
computation time	long	short

COGNITION: B-GRID

(relative difference) = (number of different cells) / (number of cells)

COGNITION: POLYGON ALGEBRA

(relative difference) = (area of difference polygons) / (area of template)

SEQUENTIAL TEMPLATE GENERATION

LIFELINE MODEL

GIS Data Conversion Model Data Conversion

Control Data	Company ID Assessment ID		WY ZY WI
Attribute	Radius Thickness Construction Date		Z WI
Coordinate sets	(x_1, y_1, z_1) (x_2, y_2, z_2) \cdots (x_n, y_n, z_n)		
G	IS	converted GIS	structure model

SEWEGE PIPELINE NETWORK

CONCLUDING REMARKS

- Integration of Many Data Sets and Analysis Methods
 - Earth science simulation wave propagation analysis
 - Engineering simulation seismic response analysis
 - Social science simulation mass evacuation analysis
- Collaboration of Computer/Computational Science
 - Capability computing for large-scale simulation
 - Capacity computing for multi-scenario simulation
 - Software engineering aspects in developing IES