INTEGRATED EARTHQUAKE SIMULATION
Program Architecture and Plugged-in Components

M. HORI
Earthquake Research Institute, UTokyo
Advanced Institute of Computational Science, RIKEN
CONTENTS

◆ Integrated Earthquake Simulation
 ● Examples of seamless simulations
 ● System computing that uses numerous components

◆ Plugged-in Components
 ● FEM for ground motion analysis
 ● SDOF for seismic structure response analysis
 ● PDS for failure analysis
 ● MAS for mass evacuation analysis
EARTHQUAKE DISASTER ASSESSMENT

CURRENT
empirical

attenuation relation

index
distance

fragility curve

damage
index

estimation

FUTURE
simulation

earthquake
tsunami
disaster

scientific rationality
OVERVIEW OF IES

- Computer model of city
 - Houses/buildings
 - Lifelines
 - Public spaces
 - Infrastructures

Structure response simulation

Earthquake
 - Amplification
 - Propagation
 - Fault mechanism

Earthquake simulation

Action against earthquake
 - Crisis management
 - Evacuation
 - Retrofitting
 - Recovery

Action simulation
Result

Fiber Model (high-rises are not included)

| steel bar deterioration considered | steel bar deterioration not considered |
Kochi City
• large population
• road network and rivers
• visitors

Countermeasures for Tsunami
• tsunami shelter
• retrofitting infrastructures
• fast information delivery
• education

Evacuation guiding/forcing
• official agent that finds agents which do not start evacuation and lets/makes it start evacuation
• determination of guiding/forcing official number, considering local road network and composition of resident characteristic
spatial uniform

maximum benefit

day: 40

day: 85

day: 130

day: 163
SYSTEM COMPUTING

◆ Software Engineering
 ● One generous programmer vs system engineer group
 ● Quality control/guarantee of software: V & V

◆ Integrated System
 ● Transparency for developers of generations
 ● Robustness error minimization
 ● Extention-ability reuse of modules

IES employs object-oriented programming that uses object hierarchy and aspect-oriented programming that uses template.
template class<S> void Analyze(S &x)
{
 double acc=x, vel=0.;
 while(…) vel += x dt;
 …
}

- algorithm -

template<class C1, class C2>
class X : public C1, public C2
{
 public:
 void Analyze(…);
}

- class -

object hierarchy

IES Structure
 SDOF
 -stiffness
 MDOF
 -stiff. set
 Fiber
 -strength
 OCM
FINITE ELEMENT METHOD

◆ Standard Numerical Method for Engineering
 - Linear/non-linear PDF in domain of complicated configuration
 - Utilization of smaller grain modules
 - Development of good commercial packages

◆ Research on New Features
 - Dynamic problems
 - Failure problems: 2D to 3D
 - Materials of complicated constitutive relations
SEISMIC STRUCTURE RESPONSE

◆ Lagrangian Formulation

\[L[v, \varepsilon] = \int \frac{1}{2} \rho v \cdot v - \frac{1}{2} \varepsilon : \varepsilon \, dv \quad (v, \varepsilon) = (u, \text{sym}\{\nabla u\}) \]

◆ Rigid-body Motion and Response

\[u(x,t) = g(t) + u^r(x,t) \]

◆ Smart Approximation

\[u^r(x,t) = U(t)A(x) \]

\[L = \frac{1}{2} MU^2 \tau_2 - \frac{1}{2} KU^2 \varepsilon + GU \quad (M,K) = (\int \frac{1}{2} \rho A \cdot A \, dv, \int \frac{1}{2} \nabla A : c \nabla A \, dv) \]
SMART SOLUTION

wave equation

rigid-body motion
response as relative deformation

smart approximation

$L[v, ε]$

$L[g + u^r, ε^r]$

$L[g + UA, U∇A]$
URBAN AREA MODEL

horizontal polygon with height

polygon 1

polygon 2

polygon 3

virtual polygon

GIS data

polygon for floor

polygon 1

polygon 2

polygon 3

vertical polygon

Refined Polygon

Shape

structure member

slab with beam

column

wall

Structure Model
AUTOMATED MODEL CONSTRUCTION

Two Major Difficulties

- Cognition of floor configuration using plural polygons
- Presumption of floor arrangement using floor configuration

![Diagram with symbols: plural polygons, floor configuration, rectangular of equal width and breadth, grid-wise arrangement of column, current compromise]
TEMPLATE FITTING

polygon

rotation, stretch, mirror-image

pattern

template set

matched

flame

rotation, stretch, mirror-image

template flame
Two methodologies

- B-GRID: cast polygon into Boolean grid
- Polygon Algebra: manipulate polygons’ configuration

<table>
<thead>
<tr>
<th></th>
<th>B-GRID</th>
<th>POLYGON ALGBRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>coding</td>
<td>easy</td>
<td>difficult</td>
</tr>
<tr>
<td>robustness</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>error</td>
<td>grid size dependence</td>
<td>principally zero</td>
</tr>
<tr>
<td>computation time</td>
<td>long</td>
<td>short</td>
</tr>
</tbody>
</table>
COGNITION: B-GRID

GIS data

Template

B-Grid

(relative difference) = (number of different cells) / (number of cells)
(relative difference) = \frac{\text{area of difference polygons}}{\text{area of template}}
SEQUENTIAL TEMPLATE GENERATION
LIFELINE MODEL

GIS Data Conversion

<table>
<thead>
<tr>
<th>Control Data</th>
<th>Company ID</th>
<th>Assessment ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Radius</th>
<th>Thickness</th>
<th>Construction Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinate sets</th>
<th>(x_1, y_1, z_1)</th>
<th>(x_2, y_2, z_2)</th>
<th>(x_n, y_n, z_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Model Data Conversion

GIS → converted GIS → structure model
SEWAGE PIPELINE NETWORK
CONCLUDING REMARKS

◆ Integration of Many Data Sets and Analysis Methods
 ● Earth science simulation wave propagation analysis
 ● Engineering simulation seismic response analysis
 ● Social science simulation mass evacuation analysis

◆ Collaboration of Computer/Computational Science
 ● Capability computing for large-scale simulation
 ● Capacity computing for multi-scenario simulation
 ● Software engineering aspects in developing IES