

We use the representation theorem to compute broadband **ground motion** for a **unique source**

Source

For slip, we use a truncated Cauchy, with limit values of 0 and maximum slip proposed by McGarr and Fletcher (2003)

proposed by McGarr and Fletcher (2003)

Correlations Between Source Parameters

For each dynamic rupture and each possible pair of source parameter we calculated correlation.

Correlation Matrix

UCSB Kinematic Source Component

Green's Functions

1D Velocity Structures

Ground Motion

Random Perturbation to the Focal Mechanisms of Subsources

Results RV M 6.6

Under-prediction of high frequencies

Over-prediction of low frequencies

Results RV M 6.6 at 20 km

2000 Tottori **M** 6.59

2000 Tottori **M** 6.59

2000 Tottori **M** 6.59

2000 Tottori **M** 6.59

M_o α **A** scaling and $\Delta \sigma$ Something to Keep in Mind

Static Stress Drop

Other Values of Dynamic Stress Drops for ENA

Boatwright and Seekins (BSSA, 2011)

Results

Conclusions

Modeling of wave-propagation with 1D velocity structures has the following problems:

- Under-prediction of high-frequency strong ground motion due to glancing of high incident angle rays off of shallow layers.
- Over-prediction of surface waves due to trapping of energy in upper shallow layers.
- ✓ To overcome this we have constructed a new method that separates high- and low- frequencies wave-propagation.
- We use a **unique source** for both high- and low-frequency wave propagation. The source parameters are stochastic but correlated.

 Incorporation of statistics of dynamic rupture simulations on rough faults.

(1991) method.

Fang and Dunham, 2013; Trugman and Dunham, 2014

Acknowledgments

We thank Chen Ji for fruitful discussions on this topic and Scott Callaghan, Fabio Silva and Tom Jordan for technical help.

> Thank You! Questions?

Input Files

Velocity model

- <u>numberLayers</u>, <u>placeholder</u> [the number of layers (including halfspace) in the 1D model, an input that is of no importance for the 1D broadband modeling]
- <u>Vp</u>, <u>Vs</u>, <u>density</u>, <u>thickness</u>, <u>Qp</u>, <u>Qs</u> [P-wave velocity, S-wave velocity, density, thickness of layer, quality factor for P-wave, quality factor for Swave]
- numberLayers line: : <u>Vp</u>, <u>Vs</u>, <u>density</u>, <u>0.0</u>, <u>Qp</u>, <u>Qs</u> [P-wave velocity of halfspace, S-wave velocity of halfspace, density of halfspeace, for halfspace use thickness 0.0, quality factor for P-wave in halfspace, quality factor for S-wave in halfspace]

Example input:

8 1.0				
1.2 0.3	1.7	0.1	27.0	18.0
1.6 0.5	1.8	0.2	45.0	30.0
1.9 1.0	2.1	0.2	90.0	60.0
4.0 2.0	2.4	1.0	420.0	280.0
4.7 2.7	2.6	2.5	567.0	378.0
6.3 3.6	2.8	23.0	864.0	576.0
6.8 3.9	2.9	13.0	936.0	624.0
7.8 4.5	3.3	0.0	1080.0	720.0

Input Files

GreenFar.in

line: <u>nameVelmod</u> [name of file containing velocity model]

line: <u>minDepth, dz1</u>, <u>Nz1</u>, <u>dz2</u>, <u>Nz2</u> [minimal depth for Greens functions, depth sampling increment for first Nz1 sources, Number of sources with dz1 sampling, depth sampling increment for Nz1+1...Nz1+Nz2 sources, Nz2 number of sources with dz2]

line: <u>minEpi, dx1</u>, <u>Nx1</u>, <u>dx2</u>, <u>Nx2 [minimal eicentral distance for Greens functions, epicentral distance sampling increment for first Nx1 sources, Number of sources with dx1 sampling, epicentral distance sampling increment for Nx1+1...Nx1+Nx2 sources, Nx2 number of sources with dx2]</u>

line: <u>Nt</u>, <u>dt</u>, <u>tBefore</u> [number of time steps, time increment, seconds to be saved before first arrival. This should never be set to 0 (because of wrap-around artifacts!!!]

line: <u>mameGreenDB</u> [name of the file containing the Greens function database] line: <u>minDepthFar</u>, <u>NFar [for sources with epicentral distance index NFar...</u>

Nx1+Nx2 every source that is more shallow than minDepthFar, the Greens Function will be replaced with a source that is at the closest but larger depth than minDepthFar. This is done, because for larger distances there can be a problem with too shallow sources.]

Example Input:

velocity.soil2 5.0 0.3 15 0.5 25 0.05 0.5 30 1. 100 4000 0.01 3.0 Green_1d.soil 0.4 35

Input Files

KinModel.inp

1. line: <u>rupL</u>, <u>ddW</u> [rupture length, down-dip width, i.e., dimensions of fault plane in m]

2. line: <u>hypoStrike</u>, <u>hypoDip</u> [position of hypocenter on fault along dip, position of hypocenter on fault along dip, in m]

3. line: <u>hypoX</u>, <u>hypoY</u>, <u>hypo</u> [hypocenter coordinates in m]

4. line: <u>M0</u>, <u>fc</u> [seismic moment in Nm and corner frequency in Hz]

5. line: strike, dip, rake (strike, dip, rake of event)

6. line: <u>dx</u>, <u>dt</u> [grid spacing (m), time increment for slip rate function (has to be same as for Green's function!]

7. line: <u>NSources</u> [number of sources]

8. line: seed1, seed2, seed3 [random seeds]

9. line: <u>nameVelMod</u> [name of file containing velocity model]

Example Input:

20000 25000 16000 19400 -15782. -2786.9 17500. 1.23e+19 0.2 122. 40. 105. 200 0.01 20 12124224 12421 534234 velocity.soil2

Input Files

syn1D_LAH.inp

1. line: <u>subStrike</u>, <u>subDip</u> [# point sources for each subfault (subfaults are interpolated)]

2. line: <u>perturbAz</u>, <u>perturabRake</u>, <u>perturbDip</u> [perturbation of azimuth, rake and dip for the high frequencies]

3. line: <u>fDeterministic</u>, <u>fStochastic</u>, <u>kappa</u> [until frequency fDeterministic radiation pattern is deterministic, above fStochastic it is stochastic. In between there is a linear transition, kappa value in s]

4. line: <u>nameSources</u> [name of file containing names of source model files]

5. line: nameStation [name of file containing station locations]

6. line: <u>switchTimeSeries</u> [1: displacement, 2: velocity, 3: acceleration. Note that the post processing programs work on velocity]

7. line<u>switchFormat</u> [1:SAC, 2: TXT. Post processing works on TXT]

Example input:

2 ! # of point source for each subfault
60.0, 30.0, 15.0 ! Perturbation on strike, rake, and dip
1.0, 3.0, 0.03
source_SCEC.list
stations25
2 ! 1 for Displacement, 2 for Vel., 3 for Acc

2 ! 1 for SAC; 2 for TXT; 3 for Binary

Exersise [cmeBscec-cme comps]\$ python run bbp.py Welcome to the SCEC Broadband Platform. Please select the modules you want to run. Do you want to perform a validation run (y/n)? n Please select a velocity model (number or name are ok): Choose a Method to use in a Broadband forward simulation: (1) GP (Graves & Pitarka) (2) UCSB

(1) LABasin 7 1

(3) SDSU

(4) EXSIM (5) CSM (6) Irikura
7 2 Do you want to run a rupture generator (y/n)? y Do you want to select a source description in /home/cme/CME/bbp/bbp_sims/start
 enter a path of a source description file
 2 Enter path and filename of source description: /home/cme/CME/bbp/bbp_val/NR/ucsb/nr v14 02 1 ucsb.sr Do you want to (1) select a BBP station list in /home/cme/CME/bbp/bbp_sims/start (2) enter a path of a BBP station list file 2.2 Enter path and filename of BBP station list: /home/cme/CME/data-files/nr_v13_3_1-summerschool.stl Do you want to run the site response module (y/n)? n Do you want to plot velocity seismograms (y/n)? y Do you want to plot acceleration seismograms (y/n)7 y Running UCrmg

1D Green's Functions

Geometric attenuation for typical focal mechanisms in ENA: SLU structure

Average over
azimuths every 20°.
Same moment for
all events.

