THE UNIVERSITY OF BRITISH COLUMBIA

Multiaxial Constitutive and Numerical Modeling in Geo-mechanics within Critical State Theory

Mahdi Taiebat¹ and Yannis F. Dafalias²

¹Associate Professor, Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada

²Distinguished Professor, Department of Civil and Environmental Engineering, University of California, Davis, CA, USA, and Department of Mechanics, National Technical University of Athens, Zographou, Greece

> SCEC Workshop on 3D Site Effects in Physics-Based Ground Motion Simulations Los Angeles, CA . May 5, 2015

ACKNOWLEDGEMENT: National Science and Engineering Research Council of Canada, and National Science Foundation of United States

Taiebat (UBC) & Dafalias (UCD, NTUA) constitutive & numerical modeling within CS theory S

Outline

- Constitutive modeling for clays
 - SANICLAY class
 - Model Performance
- 2 Constitutive modeling for sands
 - SANISAND class
 - Model Performance
- 3 Application in numerical modeling
 - Model implementations
 - Nonlinear effective stress seismic site response analysis
 - Discussion related to the SCEC workshop

SANICLAY

SANICLAY

(Dafalias et al., 2006) M_{cN} $\partial f/\partial \sigma$ $\partial g/\partial \sigma$ σ g = 0 f = 0 M_{e} (c)

SANICLAY-D

SANICLAY

SANICLAY-D

SANICLAY-B

Constitutive modeling for clays SANICLAY class

SANICLAY: Simple ANIsotropic CLAY plasticity model

• Systematic tensorial extension to multiaxial stress space

- Systematic tensorial extension to multiaxial stress space
- Relatively straightforward calibration process

	Model constant category	Designation	Georgia kaolin	Cloverdale	Ariake
(Elasticity	κ	0.03	0.037	0.05
, used		ν	0.2	0.2	0.2
MCC	Critical state	λ	0.21	0.121	0.41
L L		$M_{\rm c}, M_{\rm e}$	1.29, 1.27	0.87, 0.86	1.68, 1.65
Ć	Yield surface	N	1	0.8	1.68
SANICLAY	Rotational hardening	С	3	3	15
		x	1.73	1.69	1.76
SANICI AY-DE	Destructuration	k _i	2	0	0
6, 11 62, 11 2 (Bounding surface	h_0	550	50	1600
SANICLAY-B		ad	68	7	80

Taiebat (UBC) & Dafalias (UCD, NTUA) constitutive & numerical modeling within CS theory

Taiebat (UBC) & Dafalias (UCD, NTUA)

constitutive & numerical modeling within CS theory

SCEC workshop . Los Angeles 3 / 18

Undrained cyclic triaxial tests

• Georgia kaolin clay (reconstituted)

• Cloverdale clay (structured)

Undrained cyclic triaxial tests

• Cloverdale clay (structured)

Data: Zergoun and Vaid (1994)

Ariake clay (reconstituted)

Simulations: Seidalinov and Taiebat (2014)

Constitutive modeling for sands SANISAND class

SANISAND: Simple ANIsotropic SAND plasticity model

Dafalias, Manzari, Li, Papadimitriou, Taiebat (1997-2012)

• Formulation in triaxial stress space

$$f = |\eta - \alpha| - m = 0$$
 $\eta = \frac{q}{p}$

$$\dot{\varepsilon}_q^p = \frac{\dot{\eta}}{hb}$$
 $b = (M^b - M)$
 $\dot{\varepsilon}_v^p = A_d d |\dot{\varepsilon}_q^p|$ $d = (M^d - M)$

Constitutive modeling for sands SANISAND class

SANISAND: Simple ANIsotropic SAND plasticity model

Dafalias, Manzari, Li, Papadimitriou, Taiebat (1997-2012)

Formulation in triaxial stress space

$$f = |\eta - \alpha| - m = 0$$
 $\eta = \frac{q}{p}$

$$\dot{\varepsilon}_q^p = \frac{\dot{\eta}}{hb} \qquad b = (M^b - M)$$
$$\dot{\varepsilon}_v^p = A_d d |\dot{\varepsilon}_q^p| \qquad d = (M^d - M)$$

Dependence on state parameter

 $M^{b} = M \exp(-n^{b}\psi)$ $M^{d} = M \exp(n^{d}\psi)$

SANISAND class

Generalization and model constants

 Systematic tensorial extension to multiaxial stress space

process		Taiebat et al. (2010b)		
Parameter	Symbol	Toyoura	Nevada	Sacramento
Elasticity	Go	125	150	200
	¥.	0.05	0.05	0.2
CSL	м	1.25	1.14	1.35
	с	0.712	0.78	0.65
	co	0.934	0.83	0.96
	à	0.019	0.027	0.028
	ç	0.7	0.45	0.7
Dilatancy	n ^d	2.1	1.05	2.0
	Ao	0.704	0.81	0.8
Kinematic	n^b	1.25	2.56	1.2
Hardening	ho	7.05	9.7	5.0
	C _R	0.968	1.02	1.03
Fabric dilatancy	Z _{max}	2.0	5.0	-
	C7	600	800	-

Relatively straightforward calibration

- Soil-specific set of constants for different densities & confining pressures.
- Constitutive ingredients to account for
 - ψ -dependent dilatancy stress-ratio (Manzari and Dafalias, 1997; Li and Dafalias, 2000)
 - evolving fabric anisotropy (Dafalias and Manzari, 2004)
 - inherent fabric anisotropy (Dafalias et al., 2004)
 - plastic strains under const. stress-ratio & particle crushing (Taiebat and Dafalias, 2008)
 - anisotropic critical state (Li and Dafalias, 2012)

Model Performance

Triaxial loading and unloading on Toyoura sand

Drained triaxial tests

Undrained triaxial tests

Data: Verdugo and Ishihara (1996); Simulations: Taiebat et al. (2010b)

Model Performance

Constant-p cyclic triaxial on Toyoura sand

Data: Pradhan et al. (1989): Simulations: Taiebat et al. (2010b)

Taiebat (UBC) & Dafalias (UCD, NTUA)

constitutive & numerical modeling within CS theory

Stress ratio, g/p

-1.5 -1 -0.5 0 0.5

Simulation

Simulation

Shear strain, y (%)

1

1 1.5 2

Shear strain, y (%)

p=100 kPa (const.)

e_{in}=0.653

-2 -1

-2

-1

0

-1

0.6

0.3

0.6

0.3

0

Finite Element platform and model implementation

- OpenSees: The Open System for Earthquake Engineering Simulation
 - Fully coupled nonlinear dynamic finite element program
 - Open-source: http://opensees.berkeley.edu
 - Variety of relevant element types for continuum modeling of soil medium
 - 2D (quad) and 3D (brick)
 - $\bullet\,$ single phase (solid, u) and double phase (solid and pore fluid, u–p)
 - Variety of analysis types, integration schemes, and solvers

Finite Element platform and model implementation

- OpenSees: The Open System for Earthquake Engineering Simulation
 - Fully coupled nonlinear dynamic finite element program
 - Open-source: http://opensees.berkeley.edu
 - Variety of relevant element types for continuum modeling of soil medium
 - 2D (quad) and 3D (brick)
 - $\bullet\,$ single phase (solid, u) and double phase (solid and pore fluid, u–p)
 - Variety of analysis types, integration schemes, and solvers

• SANICLAY and SANISAND implementation:

- SANICLAY: Refined explicit integration scheme with automatic sub-stepping and error control (Seidalinov and Taiebat, 2014)
- SANISAND: Various explicit and implicit integration schemes (Ghofrani and Arduino, 2014)
- All implementations are in full tensorial forms of stresses and strains (3D)

Application of SANICLAY models

Modeling of infinite slope subjected to earthquake excitation:

- 20 m deep (2% grade) deposit of NC clay
 - SANICLAY & SANICLAY-B models
 - $\bullet~1$ m water table, permeability: $10^{-8}~m/s$
 - Periodic BCs to emulate 1D analysis
- Modeling
 - 9-node quad *u*-*p* element (Biot's theory)
 - Periodic BCs to emulate 1D analysis
 - Base dashpot to account for the finite rigidity of the underlying elastic medium
 - Velocity time history $\dot{u}(t)$ and high $V_{\rm s,base}$
- Imperial Valley record scaled to PGA=0.35g

Adopted from McGann and Arduino (2013)

Taiebat (UBC) & Dafalias (UCD, NTUA)

constitutive & numerical modeling within CS theory

Results: shear stress (τ) & shear strain (γ) at depth of 5.5 m

SANICLAY-B

Taiebat (UBC) & Dafalias (UCD, NTUA)

constitutive & numerical modeling within CS theory

Results: Displacement profile and spectral accelerations

 Horizontal displacement profiles at the end of shaking

Nonlinear effective stress seismic site response analysis

Application of SANISAND model in PRENOLIN

Modeling of free field soil column subjected to earthquake excitation in Sendai:

- 8 m deep deposit of sand
 - 0-7 m: SANISAND, and 7-8 m elastic
 - $\bullet~1.5$ m water table, permeability: $10^{-5}~m/s$
 - Periodic BCs to emulate 1D analysis

Modeling

- SSPquadUP element (Biot's theory)
- Periodic BCs to emulate 1D analysis
- Base dashpot to account for the finite rigidity of the underlying elastic medium
- Velocity time history $\dot{u}(t)$ and high $V_{\mathrm{s,base}}$
- Several motions from downhole arrays at Sendai site

Adopted from McGann and Arduino (2013)

Soil properties

- Calibration based on data of
 - drained monotonic triaxial tests at three different confining pressures
 - undrained cyclic triaxial tests on two frozen samples at depths of 3.5 and 5.5 m, resulting in plots of $G/G_{\rm max}$ and ξ vs. (ε_a)_{SA}

V. (m/s)

constitutive & numerical modeling within CS theory

• Stiffness adjusted based on profile of V_s

Depth (m)

 ∇

SAND

ELASTIC MATERIAL

BASE LAYER

1.000

Analysis results for one of the ground motions

Challenges for 3D seismic site response?!

- Moving from 1D to 3D in regional-scale simulations:
 - $\bullet\,$ Our models have always been 3D $\checkmark\,$
 - $\bullet\,$ 3D is the same in any scale and our scale is that of continuum $\checkmark\,$

Discussion related to the SCEC workshop

Challenges for 3D seismic site response?!

- Moving from 1D to 3D in regional-scale simulations:
 - $\bullet\,$ Our models have always been 3D $\checkmark\,$
 - $\bullet\,$ 3D is the same in any scale and our scale is that of continuum $\checkmark\,$
- Further works in constitutive modeling
 - Fabric-related strongly anisotropic response (next slide)
 - Constitutive modeling of intermediate soils ...
 - Validating the models for multiaxial loading ...

Yamada and Ishihara (1983)

Discussion related to the SCEC workshop

Challenges for 3D seismic site response?!

- Moving from 1D to 3D in regional-scale simulations:
 - $\bullet\,$ Our models have always been 3D $\checkmark\,$
 - $\bullet\,$ 3D is the same in any scale and our scale is that of continuum $\checkmark\,$
- Further works in constitutive modeling
 - Fabric-related strongly anisotropic response (next slide)
 - Constitutive modeling of intermediate soils ...
 - Validating the models for multiaxial loading ...

• Calibration and simulation

- State parameters including internal variables from in-situ testing results?!
- Statistical methods to deal with scarce and sparse input parameters?!
- Professional programming and use of HPC techniques?!

Discussion related to the SCEC workshop

Fabric-related strongly anisotropic response

Yoshimine et al. (1998)

THANK YOU!

Acknowledgments:

Collaborators:

Prof. Pedro Arduino (UW)

Students:

- Mr. Gaziz Seidalinov (UBC)
- Mr. Graeme McAllister (UBC)
- Mr. Alborz Ghofrani (UW)
- Mr. Long Chen (UW)

References

Bibliography I

- Dafalias, Y. F. and Manzari, M. T. (2004), 'Simple plasticity sand model accounting for fabric change effects', ASCE Journal of Engineering Mechanics 130(6), 622–634.
- Dafalias, Y. F., Manzari, M. T. and Papadimitriou, A. G. (2006), 'SANICLAY: simple anisotropic clay plasticity model', Int'l Journal for Numerical and Analytical Methods in Geomechanics 30(12), 1231–1257.
- Dafalias, Y. F., Papadimitriou, A. G. and Li, X. S. (2004), 'Sand plasticity model accounting for inherent fabric anisotropy', Journal of Engineering Mechanics 130(11), 1319–1333.
- Gens, A. (1982), Stress-strain and strength of a low plasticity clay, Ph.D. thesis, Imperial College, London University. 856 pages.
- Kammerer, A. M. (2002), Undrained Response of Monterey 0/30 Sand Under Multidirectional Cyclic Simple Shear Loading Conditions, PhD thesis, University of California, Berkeley.
- Li, X. S. and Dafalias, Y. F. (2000), 'Dilatancy for cohesionless soils', Géotechnique 54(4), 449-460.
- Li, X. S. and Dafalias, Y. F. (2012), 'Anisotropic critical state theory: role of fabric', Journal of Engineering Mechanics 138(3), 263–275.
- Manzari, M. T. and Dafalias, Y. F. (1997), 'A critical state two–surface plasticity model for sands', Géotechnique 47(2), 255–272.
- McGann, C. and Arduino, P. (2013), 'Effective stress site response analysis of a layered soil column. http://opensees.berkeley.edu/wiki/index.php/Effective_Stress_Site_Response_Analysis_of_a_ Layered_Soil_Column'.
- Pradhan, T. B., Tatsuoka, F. and Sato, Y. (1989), 'Experimental stress-dilatancy relations of sand subjected to cyclic loading', Soils and Foundations 29(1), 45–64.
- Seidalinov, G. and Taiebat, M. (2014), 'Bounding surface SANICLAY plasticity model for cyclic clay behavior', International Journal for Numerical and Analytical Methods in Geomechanics 38(7), 702–724.

References

Bibliography II

- Sheu, W. (1984), Modeling of stress-strain-strength behavior of a clay under cyclic loading, Ph.D. dissertation, University of Colorado, Boulder, Colorado, USA.
- Smith, P. R., Jardine, R. J. and Hight, D. W. (1992), 'Yielding of bothkennar clay', Géotechnique 42(2), 257–274.
- Taiebat, M. and Dafalias, Y. F. (2008), 'SANISAND: simple anisotropic sand plasticity model', International Journal for Numerical and Analytical Methods in Geomechanics 32(8), 915–948.
- Taiebat, M., Dafalias, Y. F. and Peek, R. (2010a), 'A destructuration theory and its application to SANICLAY model', International Journal for Numerical and Analytical Methods in Geomechanics 34(10), 1009–1040.
- Taiebat, M., Jeremić, B., Dafalias, Y. F., Kaynia, A. M. and Cheng, Z. (2010b), 'Propagation of seismic waves through liquefied soils', Soil Dynamics and Earthquake Engineering 30(4), 236–257.
- Verdugo, R. and Ishihara, K. (1996), 'The steady state of sandy soils', Soils and Foundations 36(2), 81-91.
- Vucetic, M. and Dobry, R. (1991), 'Effect of soil plasticity on cyclic response', Journal of Geotechnical Engineering 117(1), 89–107.
- Wood, D. M. (1974), Some Aspects of the Mechanical Behaviour of Kaolin under Truly Triaxial Conditions of Stress and Strain., PhD thesis, University of Cambridge.
- Yamada, Y. and Ishihara, K. (1983), 'Undrained deformation characteristics of sand in multi-directional shear', Soils and Foundations 23(1), 61–79.
- Yasuhara, K., Hirao, K. and Hyde, A. (1992), 'Effects of cyclic loading on undrained strength and compressibility of clay', *Soils and Foundations* 32(1), 100–116.
- Yoshimine, M., Ishihara, K. and Vargas, W. (1998), 'Effects of principal stress direction and intermediate principal stress on drained shear behavior of sand', *Soils and Foundations* **38**(3), 177–186.
- Zergoun, M. and Vaid, Y. (1994), 'Effective stress response of clay to undrained cyclic loading', Canadian Geotechnical Journal 31(5), 714–727.

Qualitative comparison between SANICLAY and SANICLAY-B

• Stress-strain simulations in undrained cyclic triaxial test

Qualitative comparison between SANICLAY and SANICLAY-B

• Stress-strain simulations in undrained cyclic triaxial test

• Damping ratio vs. shear strain simulations in undrained cyclic simple shear test

Taiebat (UBC) & Dafalias (UCD, NTUA)

constitutive & numerical modeling within CS theory

Constant-p circular stress path in π -plane

19 / 18

Constant-p circular stress path in π -plane

Undrained circular stress path in π -plane

