Recent advances in 3D full-waveform inversion (FWI) for site characterization

Challenges and open issues

Loukas F. Kallivokas

Mechanics, Uncertainty, and Simulation in Engineering
Department of Civil, Architectural, and Environmental Engineering

and

The Institute for Computational Engineering and Sciences

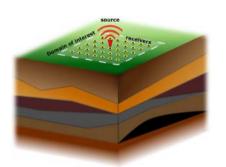
The University of Texas at Austin

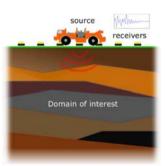
Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Site characterization (SC) by full-waveform inversion (FWI)

Overarching goal: to reconstruct the material profile of probed, semi-infinite, near-surface, geologic formations using elastic waves for interrogation, and surface records of the complete waveforms of the formation's response in the time-domain





SC by FWI - The framework and its challenges

- An imaging problem: infer properties from sensor data
- Sensor deployment is limited setting inferior to medical imaging
- Properties are spatially distributed
- No a priori simplifying assumptions (geometry; layering; etc)
- Physics drives discretization \rightarrow millions of unknown properties; for a $100m\times100m\times20m$ domain: 2 million elastic properties
- SC focuses on near-surface deposits: domain truncation needed
- Exploration geophysics drives advances
- Scale issues, complex physics, algorithmic challenges, open problem even for the acoustic case

SC by FWI - Recent advances in our work

Key problem ingredients:

- The forward problem
 - Resolve wave motion in unbounded, arbitrarily heterogeneous, domains

- FWI: an inverse medium problem
 - ► To address the imaging/inversion: PDE-constrained optimization framework
 - ▶ To address the scale: parallel computing
 - ▶ To address robustness: physics-based algorithmic tweaks

Outline

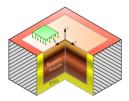
- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Perfectly-Matched-Layer (PML) truncated domains

Forward wave simulation problem - key characteristics

- Probed domain is arbitrarily heterogeneous
- Probed domain is semi-infinite in extent
- The ROI is rather limited in extent...need for domain truncation

Quality domain truncation is paramount ---> PMLs



The PML is an absorbing condition

The concept

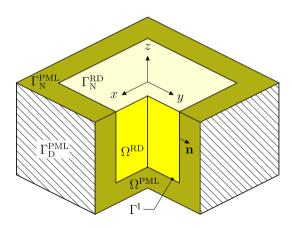
The PML is a buffer zone that surrounds a truncated finite computational domain. Within the buffer, the propagating waves are forced to decay exponentially, without generating reflections from the interface (perfectly matched).

Advantages

- absorbs waves without reflection for all non-zero angles-of-incidence and frequencies
- can handle arbitrary heterogeneity
- has tunable parameters

Hybrid formulation (optimal)

Standard displacement-based elastodynamics for Ω^{RD} Mixed-field (stress-displacement) formulation for Ω^{PML}



The IBVP (3rd-order in time)

Find $\mathbf{u}(\mathbf{x}, t) \in \Omega^{\text{RD}} \cup \Omega^{\text{PML}}$, $\mathbf{S}(\mathbf{x}, t) \in \Omega^{\text{PML}}$, such that:

$$\begin{aligned} &\operatorname{div}\left\{\mu\left[\nabla\dot{\mathbf{u}}+(\nabla\dot{\mathbf{u}})^{T}\right]+\lambda(\operatorname{div}\dot{\mathbf{u}})\mathcal{I}\right\}+\dot{\mathbf{b}}=\rho\ddot{\mathbf{u}} & \text{in } \Omega^{\mathrm{RD}}\times\mathsf{J} \\ &\operatorname{div}\left(\ddot{\mathbf{S}}^{T}\Lambda_{e}+\dot{\mathbf{S}}^{T}\Lambda_{p}+\mathbf{S}^{T}\Lambda_{w}\right)=\rho\left(a\ddot{\mathbf{u}}+b\ddot{\mathbf{u}}+c\dot{\mathbf{u}}+d\mathbf{u}\right) & \text{in } \Omega^{\mathrm{PML}}\times\mathsf{J} \\ &a\ddot{\mathbf{S}}+b\ddot{\mathbf{S}}+c\dot{\mathbf{S}}+d\mathbf{S}=\mu\left[(\nabla\ddot{\mathbf{u}})\Lambda_{e}+\Lambda_{e}(\nabla\ddot{\mathbf{u}})^{T}+(\nabla\dot{\mathbf{u}})\Lambda_{p}+\Lambda_{p}(\nabla\dot{\mathbf{u}})^{T}\right] \\ &+\mu\left[(\nabla\mathbf{u})\Lambda_{w}+\Lambda_{w}(\nabla\mathbf{u})^{T}\right]+\lambda\left[\operatorname{div}(\Lambda_{e}\ddot{\mathbf{u}})+\operatorname{div}(\Lambda_{p}\dot{\mathbf{u}})+\operatorname{div}(\Lambda_{w}\mathbf{u})\right]\mathcal{I} & \text{in } \Omega^{\mathrm{PML}}\times\mathsf{J} \end{aligned}$$

BCs:

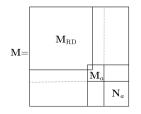
$$\begin{split} \left\{ \mu \left[\nabla \dot{\mathbf{u}} + (\nabla \dot{\mathbf{u}})^T \right] + \lambda (\operatorname{div} \dot{\mathbf{u}}) \mathcal{I} \right\} \mathbf{n}^+ &= \dot{\boldsymbol{g}}_n \\ (\ddot{\mathbf{S}}^T \boldsymbol{\Lambda}_e + \dot{\mathbf{S}}^T \boldsymbol{\Lambda}_p + \mathbf{S}^T \boldsymbol{\Lambda}_w) \mathbf{n}^- &= \mathbf{0} \\ \mathbf{u} &= \mathbf{0} \\ \mathbf{u}^+ &= \mathbf{u}^- \\ \left\{ \mu \left[\nabla \dot{\mathbf{u}} + (\nabla \dot{\mathbf{u}})^T \right] + \lambda (\operatorname{div} \dot{\mathbf{u}}) \mathcal{I} \right\} \mathbf{n}^+ + (\ddot{\mathbf{S}}^T \boldsymbol{\Lambda}_e + \dot{\mathbf{S}}^T \boldsymbol{\Lambda}_n + \mathbf{S}^T \boldsymbol{\Lambda}_w) \mathbf{n}^- &= \mathbf{0} \\ \end{split} \quad \begin{array}{l} \operatorname{on} \Gamma_{\mathbf{N}}^{\mathrm{RD}} \times \mathbf{J} \\ \operatorname{on} \Gamma_{\mathbf{D}}^{\mathrm{PML}} \times \mathbf{J} \\ \operatorname{on} \Gamma^{\mathrm{I}} \times \mathbf{J} \\ \end{array} \quad \\ \end{array}$$

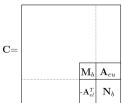
Semi-discrete form

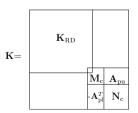
$$\mathbf{M} \, \ddot{\mathbf{d}} + \mathbf{C} \ddot{\mathbf{d}} + \mathbf{K} \dot{\mathbf{d}} + \mathbf{G} \mathbf{d} = \dot{\mathbf{f}}$$
 or $\mathbf{M} \ddot{\mathbf{d}} + \mathbf{C} \dot{\mathbf{d}} + \mathbf{K} \mathbf{d} + \mathbf{G} \ddot{\mathbf{d}} = \mathbf{f}$, $\ddot{\mathbf{d}} = \int_0^t \mathbf{d}(\tau)|_{\mathrm{PML}} \, d\tau \quad \Rightarrow \quad \dot{\ddot{\mathbf{d}}} = \mathbf{d}|_{\mathrm{PML}}$

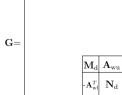
$$\mathbf{M} = \begin{bmatrix} \bar{\mathbf{M}}_{\mathrm{RD}} + \bar{\mathbf{M}}_{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_{a} \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} \bar{\mathbf{M}}_{b} & \bar{\mathbf{A}}_{eu} \\ -\bar{\mathbf{A}}_{el}^{T} & \mathbf{N}_{b} \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} \bar{\mathbf{K}}_{\mathrm{RD}} + \bar{\mathbf{M}}_{c} & \bar{\mathbf{A}}_{pu} \\ -\bar{\mathbf{A}}_{pl}^{T} & \mathbf{N}_{c} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} \bar{\mathbf{M}}_{d} & \bar{\mathbf{A}}_{wu} \\ -\bar{\mathbf{A}}_{wl}^{T} & \mathbf{N}_{d} \end{bmatrix} \qquad \mathbf{d} = \begin{bmatrix} \mathbf{u}_{h} & \mathbf{S}_{h} \end{bmatrix}^{T} \qquad \mathbf{f} = \begin{bmatrix} \bar{\mathbf{f}}_{\mathrm{RD}} & \mathbf{0} \end{bmatrix}^{T}$$









Temporal discretization

Temporal integration:

$$\mathbf{M}\ddot{\mathbf{d}} + \mathbf{C}\dot{\mathbf{d}} + \mathbf{K}\mathbf{d} + \mathbf{G}\bar{\mathbf{d}} = \mathbf{f}, \qquad \bar{\mathbf{d}} = \int_0^t \mathbf{d}(au)|_{\mathrm{PML}} \; d au \quad \Rightarrow \quad \dot{\bar{\mathbf{d}}} = \mathbf{d}|_{\mathrm{PML}}$$

A couple of choices → implicit Newmark Method

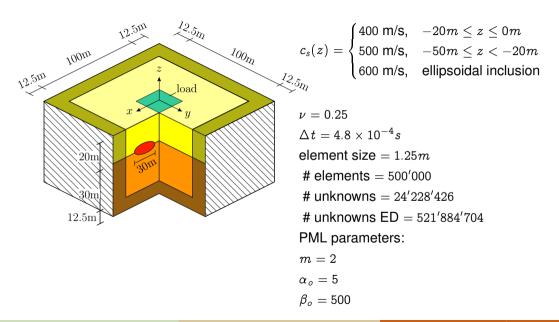
$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{d}} \\ \ddot{\bar{\mathbf{d}}} \end{bmatrix} + \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{d}} \\ \dot{\bar{\mathbf{d}}} \end{bmatrix} + \begin{bmatrix} \mathbf{K} & \mathbf{G} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \bar{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$
 Un-Symmetric 1
$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{d}} \\ \ddot{\bar{\mathbf{d}}} \end{bmatrix} + \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ -\mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{d}} \\ \dot{\bar{\mathbf{d}}} \end{bmatrix} + \begin{bmatrix} \mathbf{K} & \mathbf{G} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \bar{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$
 Un-Symmetric 2

A better choice using spectral elements \rightarrow explicit Runge-Kutta method

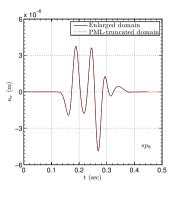
$$egin{aligned} rac{d}{dt} egin{bmatrix} \mathbf{x}_0 \ \mathbf{x}_1 \ \mathbf{M}\mathbf{x}_2 \end{bmatrix} = egin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{I} \ -\mathbf{G} & -\mathbf{K} & -\mathbf{C} \end{bmatrix} egin{bmatrix} \mathbf{x}_0 \ \mathbf{x}_1 \ \mathbf{x}_2 \end{bmatrix} + egin{bmatrix} \mathbf{0} \ \mathbf{0} \ \mathbf{f} \end{bmatrix} \end{aligned}$$

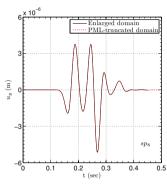
where $\mathbf{x}_0 = \overline{\mathbf{d}}, \ \mathbf{x}_1 = \mathbf{d}, \ \mathbf{x}_2 = \dot{\mathbf{d}}.$

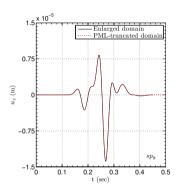
Numerical experiment: heterogeneous medium with inclusion



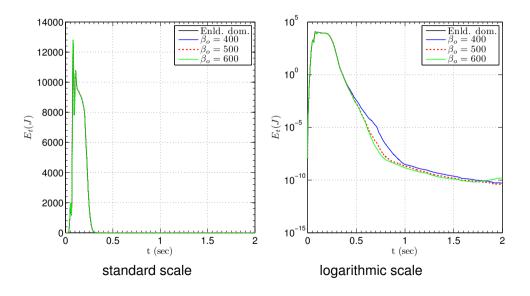
Displacements time histories



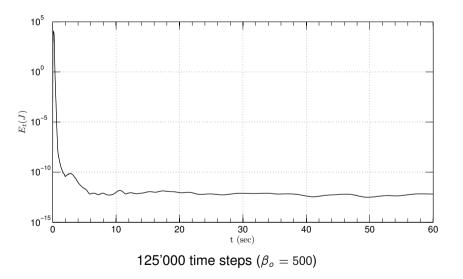


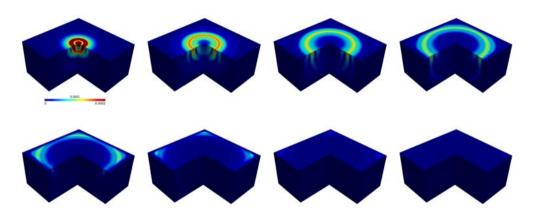


Energy decay



Long-time stability





Snapshots of total displacement taken at t = 0.111, 0.147, 0.183, 0.219, 0.255, 0.291, 0.327, 0.363 s.

PML accuracy - relative error

Error at sampling points between hybrid-PML and enlarged domain solutions

sample point	Х	у	Z	error (Example 1)	error (Example 2)
sp1	0	0	0	1.17×10^{-12}	4.61×10^{-10}
sp2	+50	0	0	2.52×10^{-8}	6.07×10^{-7}
sp3	+50	0	-25	2.89×10^{-9}	2.87×10^{-6}
sp4	+50	0	-50	1.46×10^{-7}	7.03×10^{-6}
sp5	0	0	-50	9.86×10^{-9}	1.41×10^{-5}
sp6	+50	+50	0	3.26×10^{-7}	1.86×10^{-6}
sp7	+50	+50	-25	5.50×10^{-8}	6.72×10^{-6}
sp8	+50	+50	-50	5.08×10^{-7}	6.44×10^{-6}

Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Goal: find the distribution of material properties $\lambda(x)$, $\mu(x)$

PDE-constrained optimization problem:

 $\min_{\lambda,\mu} \; \mathcal{J}(\lambda,\mu) := \overbrace{\frac{1}{2} \sum_{j=1}^{N_r} \int_0^T \int_{\Gamma_m} (\mathbf{u} - \mathbf{u}_m) \cdot (\mathbf{u} - \mathbf{u}_m) \; \delta(\mathbf{x} - \mathbf{x}_j) \, \mathrm{d}\Gamma \; dt}^{\mathsf{data \, misfit}} + \overbrace{\mathcal{R}(\lambda,\mu)}^{\mathsf{regularization}}$

subject to the continuous forward problem

Regularization:

$$egin{aligned} \mathcal{R}^{TN}(\lambda,\mu) &= rac{R_{\lambda}}{2} \int_{\Omega}
abla \lambda \cdot
abla \lambda \; d\Omega + rac{R_{\mu}}{2} \int_{\Omega}
abla \mu \cdot
abla \mu \; d\Omega \ \mathcal{R}^{TV}(\lambda,\mu) &= rac{R_{\lambda}}{2} \int_{\Omega^{\mathrm{RD}}} (
abla \lambda \cdot
abla \lambda + \epsilon)^{rac{1}{2}} \, \mathrm{d}\Omega + rac{R_{\mu}}{2} \int_{\Omega^{\mathrm{RD}}} (
abla \mu \cdot
abla \mu \cdot
abla \mu + \epsilon)^{rac{1}{2}} \, \mathrm{d}\Omega \end{aligned}$$

The Lagrangian functional

$$\mathcal{L}(\mathbf{u}, \mathbf{S}, \mathbf{w}, \mathbf{T}, \lambda, \mu) := \frac{1}{2} \sum_{j=1}^{N_r} \int_0^T \int_{\Gamma_m} (\mathbf{u} - \mathbf{u}_m) \cdot (\mathbf{u} - \mathbf{u}_m) \, \delta(\mathbf{x} - \mathbf{x}_j) \, d\Gamma \, dt + \mathcal{R}(\lambda, \mu)$$

$$- \int_0^T \int_{\Omega^{\text{RD}}} \nabla \mathbf{w} : \left\{ \mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right] + \lambda (\operatorname{div} \mathbf{u}) \mathcal{I} \right\} \, d\Omega \, dt$$

$$- \int_0^T \int_{\Omega^{\text{PML}}} \nabla \mathbf{w} : \left(\dot{\mathbf{S}}^T \Lambda_e + \mathbf{S}^T \Lambda_p + \dot{\mathbf{S}}^T \Lambda_w \right) \, d\Omega \, dt - \int_0^T \int_{\Omega^{\text{RD}}} \mathbf{w} \cdot \rho \ddot{\mathbf{u}} \, d\Omega \, dt$$

$$- \int_0^T \int_{\Omega^{\text{PML}}} \mathbf{w} \cdot \rho \left(a \ddot{\mathbf{u}} + b \dot{\mathbf{u}} + c \mathbf{u} + d \ddot{\mathbf{u}} \right) \, d\Omega \, dt + \int_0^T \int_{\Gamma_N^{\text{RD}}} \mathbf{w} \cdot g_n \, d\Gamma \, dt$$

$$+ \int_0^T \int_{\Omega^{\text{RD}}} \mathbf{w} \cdot \mathbf{b} \, d\Omega \, dt - \int_0^T \int_{\Omega^{\text{PML}}} \mathbf{T} : \left(a \ddot{\mathbf{S}} + b \dot{\mathbf{S}} + c \mathbf{S} + d \ddot{\mathbf{S}} \right) \, d\Omega \, dt$$

$$+ \int_0^T \int_{\Omega^{\text{PML}}} \mathbf{T} : \mu \left[(\nabla \dot{\mathbf{u}}) \Lambda_e + \Lambda_e (\nabla \dot{\mathbf{u}})^T + (\nabla \mathbf{u}) \Lambda_p + \Lambda_p (\nabla \mathbf{u})^T + (\nabla \ddot{\mathbf{u}}) \Lambda_w + \Lambda_w (\nabla \ddot{\mathbf{u}})^T \right]$$

$$+ \mathbf{T} : \lambda \left[\operatorname{div}(\Lambda_e \dot{\mathbf{u}}) + \operatorname{div}(\Lambda_p \mathbf{u}) + \operatorname{div}(\Lambda_p \ddot{\mathbf{u}}) \right] \mathcal{I} \, d\Omega \, dt$$

Optimality system

Stationarity enforced by the vanishing of first-order Gâteau derivatives

State (forward) problem: $\mathcal{L}'(\mathbf{u}, \mathbf{S}, \mathbf{w}, \mathbf{T}, \lambda, \mu)(\tilde{\mathbf{w}}, \tilde{\mathbf{T}}) = 0$

an initial value BVP

Adjoint problem: $\mathcal{L}'(\mathbf{u}, \mathbf{S}, \mathbf{w}, \mathbf{T}, \lambda, \mu)(\tilde{\mathbf{u}}, \tilde{\mathbf{S}}) = 0$

a final value BVP

Control problem: $\mathcal{L}'(\mathbf{u}, \mathbf{S}, \mathbf{w}, \mathbf{T}, \lambda, \mu)(\tilde{\lambda}) = 0$

 $\mathcal{L}'(\mathbf{u}, \mathbf{S}, \mathbf{w}, \mathbf{T}, \lambda, \mu)(\tilde{\mu}) = 0$

Algorithmic tweak: regularization factor continuation

$$\mathbf{\tilde{M}g} = R \; \mathbf{g}_{\mathsf{reg}} + \mathbf{g}_{\mathsf{mis}}$$

Concept: "size" of R \mathbf{g}_{reg} should be proportional to that of \mathbf{g}_{mis}

$$\mathbf{n}_{\mathtt{reg}} = rac{\mathbf{g}_{\mathtt{reg}}}{\|\mathbf{g}_{\mathtt{reg}}\|}, \qquad \mathbf{n}_{\mathtt{mis}} = rac{\mathbf{g}_{\mathtt{mis}}}{\|\mathbf{g}_{\mathtt{mis}}\|}$$

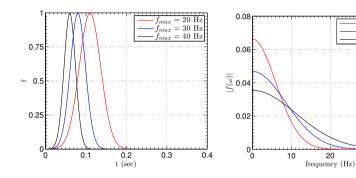
$$ilde{\mathbf{M}}\mathbf{g} = \|\mathbf{g}_{ ext{mis}}\| \ \Big(oldsymbol{arrho} \ \mathbf{n}_{ ext{reg}} + \mathbf{n}_{ ext{mis}} \Big), \qquad oldsymbol{arrho} = R \ rac{\|\mathbf{g}_{ ext{reg}}\|}{\|\mathbf{g}_{ ext{mis}}\|} pprox 0.5 {
ightarrow} 0.3$$

$$R = \wp \; rac{\|\mathbf{g}_{ ext{mis}}\|}{\|\mathbf{g}_{ ext{reg}}\|}$$

Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Numerical Experiments



Example 1: smoothly-varying heterogeneous medium

Example 2: layered medium

Example 3: layered medium with inclusion

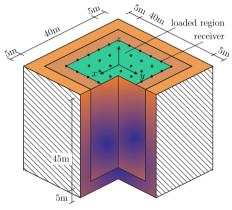
Example 4: layered medium with 3 inclusions

 $f_{max} = 20 \text{ Hz}$ $f_{max} = 30 \text{ Hz}$

30

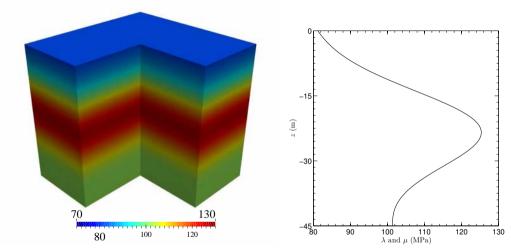
40

Example 1: setup



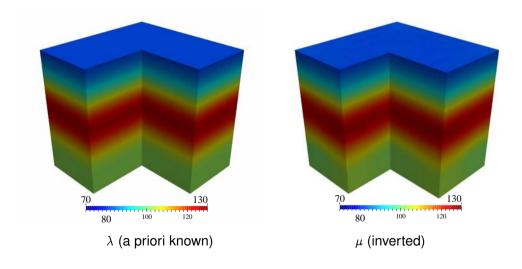
$$\lambda(z) = \mu(z) = 80 + 0.45 \; |z| + 35 \; \exp \Big(- \frac{(|z| - 22.5)^2}{150} \Big) \, (\text{MPa})$$

```
\begin{aligned} &\min\ c_s = 200 m/s \\ &\max\ c_p = 433 m/s \\ &\text{element size} = 1.25 m \\ &\Delta t = 10^{-3} s \\ &\text{\# time steps} = 400/450 \\ &\text{\# elements} = 72'324 \\ &\text{\# state unknowns} = 3'578'136 \\ &\text{\# material unknowns} = 616'850 \end{aligned}
```

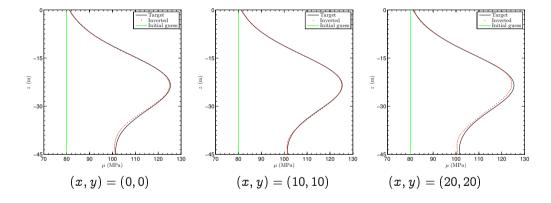


Smoothly varying medium: target λ and μ (MPa); and profile at (x, y) = (0, 0)

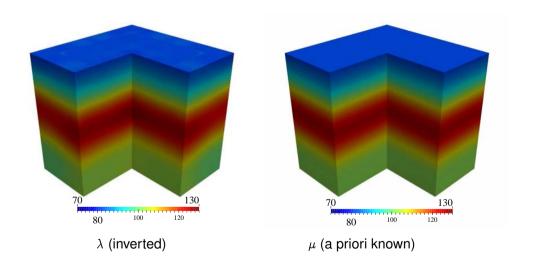
Single-parameter inversion (μ only)



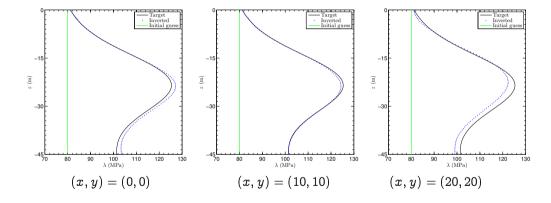
Single-parameter inversion (μ only)



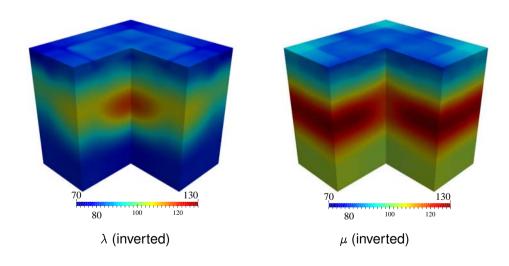
Single-parameter inversion (λ only)



Single-parameter inversion (λ only)



Simultaneous inversion for λ and μ - unbiased



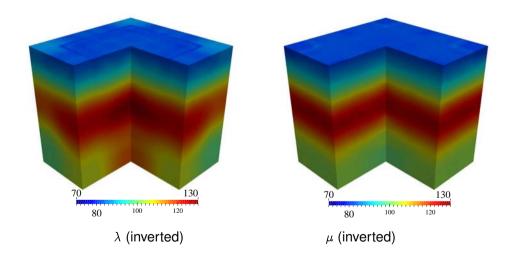
A physics-based algorithmic tweak

Bias search directions of λ by the search directions of μ during the early stages of the inversion process:

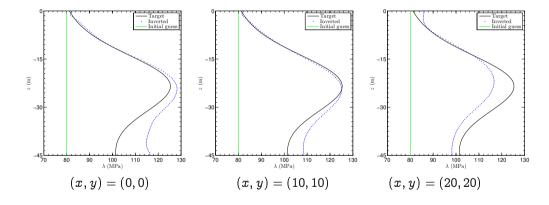
$$egin{aligned} s_k^\lambda \leftarrow \|s_k^\lambda\| \ \Big(W rac{s_k^\mu}{\|s_k^\mu\|} + (1-W) rac{s_k^\lambda}{\|s_k^\lambda\|} \Big) \end{aligned}$$

 $W=1\rightarrow 0$

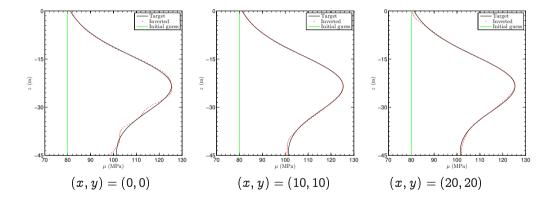
Simultaneous inversion for λ and μ - biased



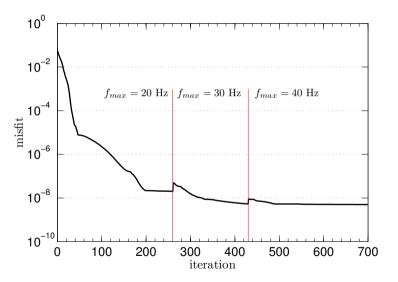
Simultaneous inversion: λ cross-sections



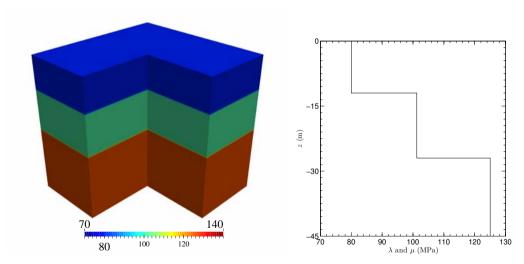
Simultaneous inversion: μ cross-sections



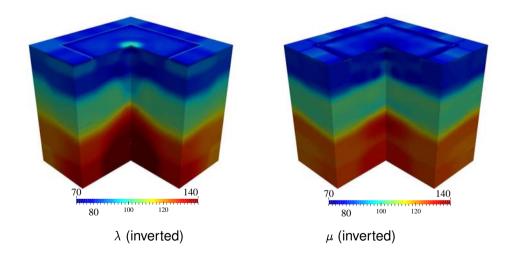
Misfit history; frequency continuation scheme

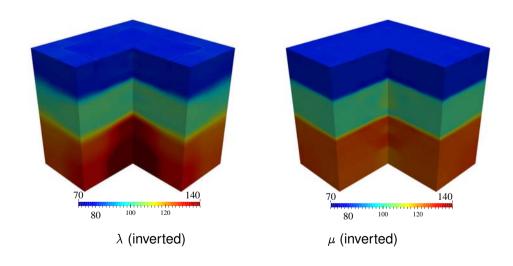


Example 2: setup

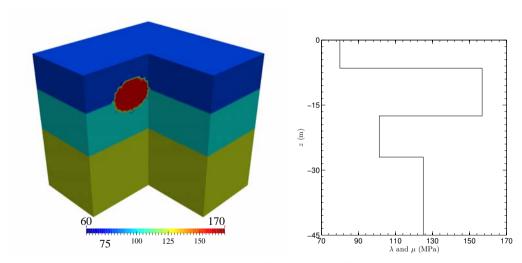


Layered medium: target λ and μ (MPa); and profile at (x, y) = (0, 0)

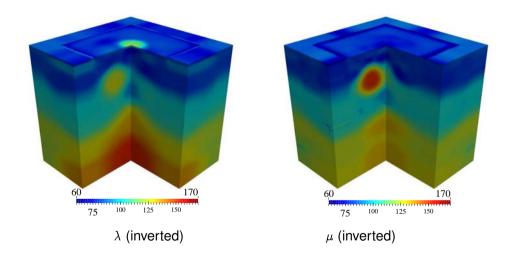


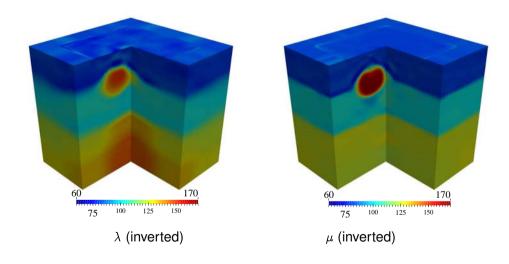


Example 3: setup

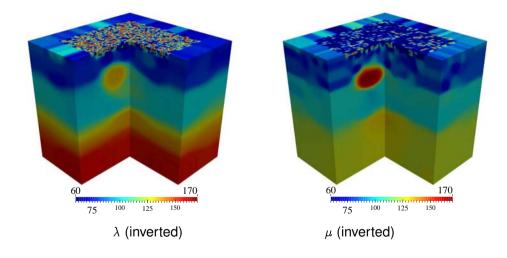


Layered medium: target λ and μ (MPa); and profile at (x, y) = (7.5, 0)

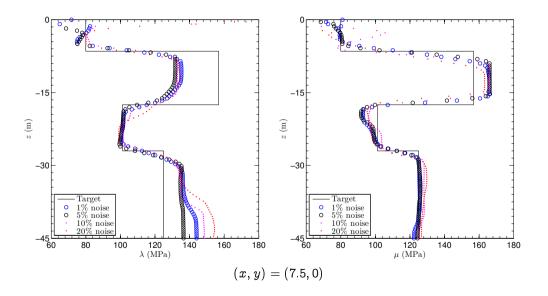




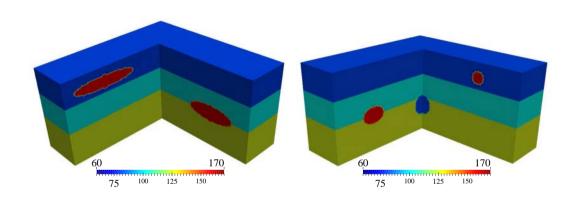
20% Gaussian noise, $f_{max} = 40 \text{ Hz}$



Inversion with Gaussian noise: λ , μ cross-sections

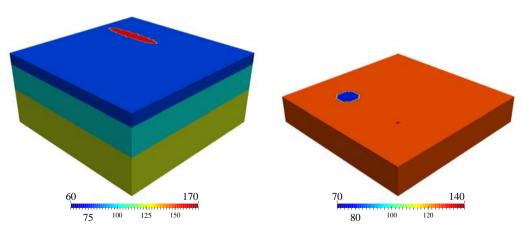


Example 4: setup

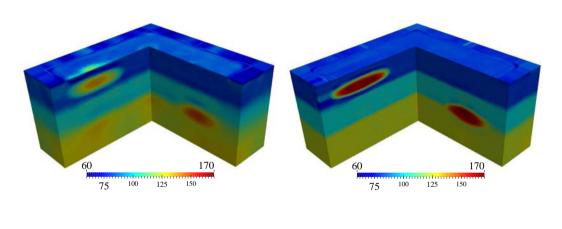


Layered medium with three inclusions: target λ and μ (MPa) at two different cross-sections. # state unknowns = 9,404,184; # material unknowns = 2,429,586 80 m \times 80 m \times 45 m medium

Example 4: setup

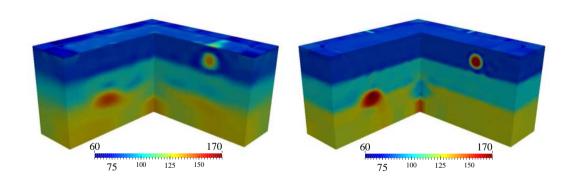


Layered medium with three inclusions: target λ and μ on (left) the z=-8.75 m cross-section; and (right) the z=-35 m cross-section



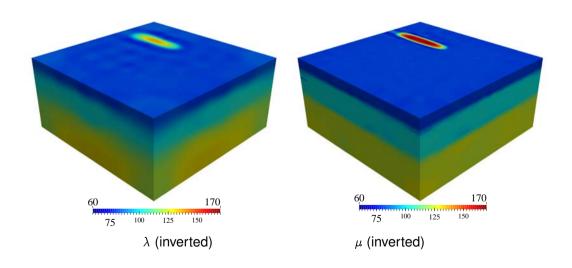
 λ (inverted)

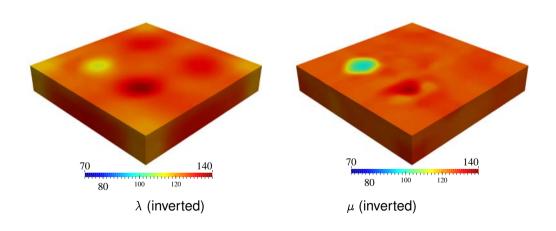
 μ (inverted)



 λ (inverted)

 μ (inverted)



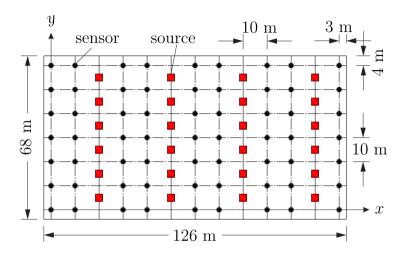


Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Garner Valley field experiment

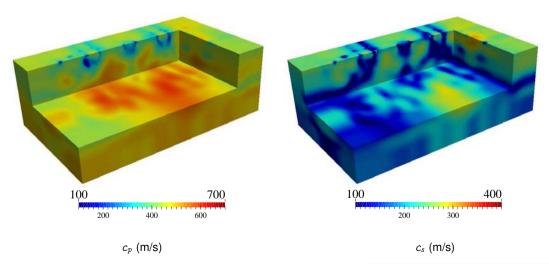
The experiment layout



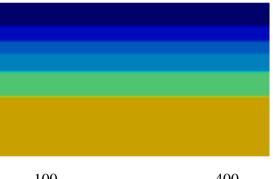
computational domain: $126 \times 68 \times 40 \text{ m} + 10 \text{ m-thick PML}$

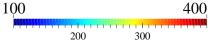
#material parameters: 718,566 #state unknowns: 3,885,648

FWI profiles

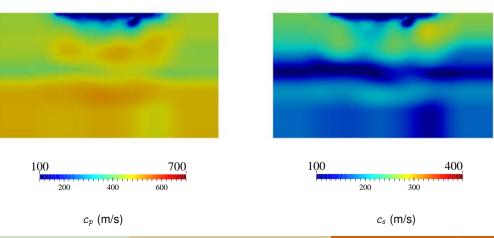


SASW c_s profile

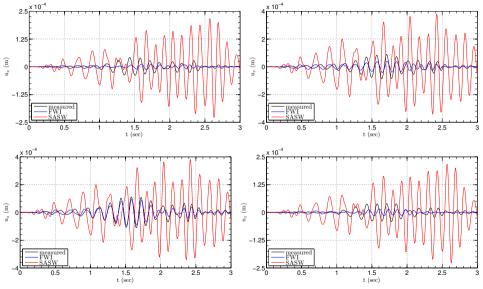




Cross-sectional profiles: x = 10 m



Time-history comparisons: x = +10 m



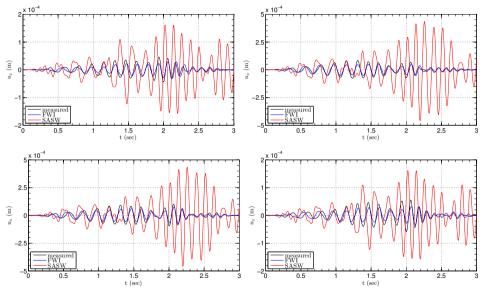
Sensor locations; from top-left to bottom-right: y = 60, 40, 20, 0 m

Time-history comparisons: x = +90 m



Sensor locations; from top-left to bottom-right: y = 60, 40, 20, 0 m

Time-history comparisons: x = +100 m



Sensor locations; from top-left to bottom-right: y = 60, 40, 20, 0 m

Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- Conclusions
 - Summary
 - Challenges

Summary

A systematic framework for FWI-based site characterization

Outline

- Background
- 2 3D forward wave simulation problem
 - PML formulations for elastodynamics
- 3 3D inverse medium problem
 - Inversion in PML-truncated elastic media
 - 3D characterization using synthetic data
 - 3D characterization using field data: the NEES@UCSB site
- 4 Conclusions
 - Summary
 - Challenges

Challenges

- Material attenuation inversion for attenuation parameters a huge challenge
- Real time experiment steering
- Ground water level
- Beyond elasticity: poroelasticity / permeability
- Algorithmic improvements for speed and robustness
- Multi-physics probing (unlikely)
- Validation (difficult control setting)

References

L. F. Kallivokas, A. Fathi, S. Kucukcoban, K. H. Stokoe II, J. Bielak, O. Ghattas

Site characterization using full waveform inversion, Soil Dynamics and Earthquake Engineering, 47:62-82, 2013.

A. Fathi, B. Poursartip, L. F. Kallivokas

Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media, *International Journal for Numerical Methods in Engineering*, 101(3):165-198, 2015.

A. Fathi, L. F. Kallivokas, B. Poursartip

Full-waveform inversion in three-dimensional PML-truncated elastic media, Computer Methods in Applied Mechanics and Engineering, in revision, 2015.

A. Fathi, L. F. Kallivokas, K. H. Stokoe II, B. Poursartip

Three-dimensional site characterization using full-waveform inversion: theory, computations, and field experiments, in preparation.