SC//EC

Simplify Your Science with Workflow Tools

Scott Callaghan scottcal@usc.edu

2018 IHPCSS July 10, 2018 Southern California

- What are scientific workflows?
- What problems do workflow tools solve?
- Overview of available workflow tools
- CyberShake (seismic hazard application)
 - Computational overview
 - Challenges and solutions
- Ways to simplify your work
- Goal: Help you figure out if this would be useful

Scientific Workflows

- Formal way to express a scientific calculation
- Multiple tasks with dependencies between them
- No limitations on tasks
- Capture task parameters, input, output
- Independence of workflow process and data
 - Often, run same workflow with different data
- You use workflows all the time...

Perhaps your workflow is simple...

...or maybe a bit more complicated...

... or maybe just confusing

Southern California Earthquake Center

Workflow Components

- Task executions
 - Specify a series of tasks to run
- Data and control dependencies between tasks
 - Outputs from one task may be inputs for another
- Task scheduling
 - Some tasks may be able to run in parallel with other tasks
- File and metadata management
 - Track when a task was run, key parameters
- Resource provisioning (getting cores)
 - Computational resources are needed to run jobs

What do we need help with?

- Task executions
 - What if something fails in the middle?
- Data and control dependencies
 - Make sure inputs are available for tasks
- Task scheduling
 - Minimize execution time while preserving dependencies
- Metadata
 - Automatically capture and track
- Getting cores

Workflow tools can help!

- Automate your pipeline
- Define your workflow via programming or GUI
- Run workflow on local or remote system
- Can support all kinds of workflows
- Use existing code (no changes)
- Provide many kinds of fancy features and capabilities
 - Flexible but can be complex
- Will discuss one set of tools (Pegasus) as example, but concepts are shared

Pegasus-WMS

- Developed at USC's Information Sciences Institute
- Used in many domains, including LIGO project
- Workflows are executed from local machine
 - Jobs can run on local machine or on distributed resources
- You use API to write code describing workflow ("create")
 - Python, Java, Perl
 - Tasks with parent / child relationships
 - Files and their roles
- Pegasus creates XML file of workflow called a DAX
- Workflow represented by directed acyclic graph

input.txt my_job output.txt

Sample Workflow Creation

//Create DAX object dax = ADAG("test_dax") //Define my job myJob = Job(name="my_job") //Input and output files to my job inputFile = File("input.txt") outputFile = File("output.txt") //Arguments to my_job (./my_job input=input.txt output=output.txt) myJob.addArgument("input=input.txt", "output=output.txt") //Role of the files for the job myJob.uses(inputFile, link=Link.INPUT) myJob.uses(outputFile, link=Link.OUTPUT) //Add the job to the workflow dax.addJob(myJob) //Write to file fp = open("test.dax", "w") dax.writeXML(fp) fp.close()

Getting ready to run ("Planning")

- DAX is "abstract workflow"
 - Logical filenames and executables
 - Algorithm description
- Use Pegasus to "plan" workflow for execution
 - Uses catalogs to resolve logical names, compute info
 - Pegasus automatically augments workflow
 - Staging jobs (if needed) with Globus Online
 - Registers output files in a catalog to find later
 - Wraps jobs in pegasus-kickstart for detailed statistics
 - Generates a DAG
 - Top-level workflow description (tasks and dependencies)
 - Submission file for each job

Pegasus Workflow Path

Other tools in stack

- HTCondor (UW Madison)
 - Pegasus 'submits' workflow to HTCondor
 - Supervises runtime execution of DAG files
 - Maintains job queue
 - Monitors dependencies
 - Schedules jobs
 - Retries failures
 - Writes checkpoint
- Tools for remote job submission to clusters and clouds
 - GRAM, SSH, BOSCO, CREAMCE, glideins/pilot jobs, ...
 - Condor uses tool to match jobs to resources

Full workflow stack

Other Workflow Tools

- Regardless of the tool, same basic stages
 - Describe your workflow (Pegasus "Create")
 - Prepare your workflow for the execution environment (Pegasus "Plan")
 - Send jobs to resources (HTCondor, SSH, GRAM)
 - Monitor the execution of the jobs (HTCondor DAGMan)
- Brief overview of some other available tools

Other Workflow Tools

- Swift (U of Chicago)
 - Workflow defined via scripting language

```
//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {
    //Print and pipe stdout to t
    echo "Hello, world!" stdout=@filename(t);
//Create a new messagefile, linked to hello.txt
messagefile outfile <"hello.txt">
//Run greeting() and store results
outfile = greeting();
```

- Workflow compiled internally and executed
- Focus on large data, many tasks

- Askalon (U of Innsbruck)
 - Create workflow description
 - Use workflow language
 - Or use UML editor to graphically create • Conversion: like planning, to prep for
 - execution
 - Submit jobs to Enactment Engine, which distributes jobs for execution at remote grid or cloud sites
 - Provides monitoring tools

More Workflow Tools

- Kepler (diverse US collaboration)
 - GUI interface
 - Many models of computation ('actors') with built-in components (tasks)
- RADICAL Cybertools (international)
 - Sits atop SAGA, a Python API for submitting remote jobs
 - Uses pilot jobs to provision resources
- UNICORE (Jülich Supercomputing Center)
 - GUI interface to describe workflow
 - Branches, loops, parallel loops
- Many more: ask me about specific use cases
- NCSA Blue Waters has webinars online on several tools

Workflow Application: CyberShake

- What will peak ground motion be over the next 50 years?
 - Used in building codes, insurance rates, disaster planning
 - Answered via Probabilistic Seismic Hazard Analysis (PSHA)
 - Communicated with hazard curves and maps

Southern California Earthquake Center

CyberShake Computational Requirements

- Determine shaking of ~500,000 earthquakes per site
- Large parallel jobs
 - 2 GPU wave propagation jobs, 800 nodes x 1 hr, 1.5 TB output
- Small serial jobs
 - 500,000 seismogram calculation jobs, 1 core x 4.7 min, 30 GB
- Need ~300 sites for hazard map
- Decided to use scientific workflows
 - Automation
 - Data management
 - Error recovery

Challenge: Resource Provisioning

- For large parallel jobs, submit to remote scheduler
 - GRAM (or other tool) puts jobs in remote queue
 - Runs like a normal batch job
 - Can specify either CPU or GPU nodes
- For small serial jobs, need high throughput
 - Putting lots of jobs in the batch queue is ill-advised
 - Scheduler isn't designed for heavy job load
 - Scheduler cycle is ~5 minutes
 - Policy limits number of job submissions
- Solution: Pegasus-mpi-cluster (PMC)

Pegasus-mpi-cluster

- MPI wrapper around serial or thread-parallel jobs
 - Master-worker paradigm
 - Preserves dependencies
 - HTCondor submits job to multiple nodes, starts PMC
 - Specify jobs as usual, Pegasus does wrapping
- Uses intelligent scheduling
 - Core counts
 - Memory requirements
- Can combine writes
 - Workers write to master, master aggregates to fewer files

Challenge: Data Management

- Millions of data files
 - Pegasus provides staging
 - Symlinks files if possible, transfers files if needed
 - Transfers output back to local archival disk
 - Supports running parts of workflows on separate machines
 - Cleans up temporary files when no longer needed
 - Directory hierarchy to reduce files per directory
- We added automated checks to check integrity
 - Correct number of files, NaN, zero-value checks, correct size
 - Included as new jobs in workflow

CyberShake Study 17.3

- Hazard curves for 876 sites
- Used OLCF Titan and NCSA Blue Waters
- Averaged 1295 nodes (CPUs and GPUs) for 31 days
 - Workflow tools scheduled 15,581 jobs
 - 23.9 workflows running concurrently
- Generated 285 million seismograms
- Workflow tools managed 777 TB of data
 - 308 TB of intermediate data transferred
 - 10.7 TB (~17M files) staged back to local disk
- Workflow tools scale!

0.4 0.6 0.8 1.0 3sec SA, 2% in 50 yrs

Problems Workflows Solve

- Task executions
 - Workflow tools will retry and checkpoint if needed
- Data management
 - Stage-in and stage-out data for jobs automatically
- Task scheduling
 - Optimal execution on available resources
- Metadata
 - Automatically track runtime, environment, arguments, inputs
- Getting cores
 - Whether large parallel jobs or high throughput

Should you use workflow tools?

- Probably using a workflow already
 - Replaces manual hand-offs and polling to monitor
- Provides framework to assemble community codes
 - Also useful for training new teammates
- Scales from local computer to large clusters
- Provide portable algorithm description independent of data CyberShake has run on 9 systems since 2007 with same workflow
- Does add additional software layers and complexity
 - Some development time is required

Final Thoughts

- Automation is vital, even without workflow tools
 - Eliminate human polling
 - Get everything to run automatically if successful
 - Be able to recover from common errors
- Put ALL processing steps in the workflow
 Include validation, visualization, publishing, notifications
- Avoid premature optimization
- Consider new compute environments (dream big!)
 - Larger clusters, XSEDE/PRACE/RIKEN/SciNet, Amazon EC2
- Tool developers want to help you!

Links

- SCEC: http://www.scec.org
- Pegasus: <u>http://pegasus.isi.edu</u>
- Pegasus-mpi-cluster: <u>http://pegasus.isi.edu/wms/docs/latest/cli-pegasus-mpi-</u> cluster.php
- HTCondor: http://www.cs.wisc.edu/htcondor/
- Globus: http://www.globus.org/
- Swift: http://swift-lang.org
- Askalon: http://www.dps.uibk.ac.at/projects/askalon/
- Kepler: <u>https://kepler-project.org/</u>
- RADICAL Cybertools: <u>https://radical-cybertools.github.io/</u>
- UNICORE: http://www.unicore.eu/
- CyberShake: <u>http://scec.usc.edu/scecpedia/CyberShake</u>

SDSC SAN DIEGO SUPERCOMPUTER CENTER

SC//EC

AN NSF+USGS CENTER

Southern California Earthquake Center

COMPUTING FACILITY

Pegasus