
1

Simplify Your Science with
Workflow Tools

Scott Callaghan
Southern California Earthquake Center
University of Southern California
scottcal@usc.edu

International HPC Summer School
June 4, 2014

Overview

• What are scientific workflows?
• What problems do workflow tools solve?
• Overview of available workflow tools
• CyberShake (seismic hazard application)

– Computational overview
– Challenges and solutions

• Ways to simplify your work
• Goal: Help you figure out if this would be useful

2

Scientific Workflows

• Formal way to express a scientific calculation
• Multiple tasks with dependencies between them
• No limitations on tasks

– Short or long
– Loosely or tightly coupled

• Independence of workflow process and data
– Often, run same workflow with different data

• You use workflows all the time…

3

Sample Workflow

4

#!/bin/bash
1) Stage-in input data to compute environment
scp myself@datastore.com:/data/input.txt /scratch/input.txt
2) Run a serial job with an input and output
bin/pre-processing in=input.txt out=tmp.txt
3) Run a parallel job with the resulting data
mpiexec bin/parallel-job in=tmp.txt out_prefix=output
4) Run a set of independent serial jobs in parallel – scheduling by hand
for i in `seq 0 $np`; do

bin/integrity-check output.$i &
done
5) While those are running, get metadata and run another serial job
ts=`date +%s`
bin/merge prefix=output out=output.$ts
6) Finally, stage results back to permanent storage
scp /scratch/output.$ts myself@datastore.com:/data/output.$ts

Could think of shell script as a workflow

5

stage-in parallel-
job

pre-
processing merge stage-out

date

integrity-
check

input.txt

input.txt tmp.txt output.*

output.$ts

output.$ts

Workflow Components

• Task executions
– Specify a series of tasks to run

• Data and control dependencies between tasks
– Outputs from one task may be inputs for another

• Task scheduling
– Some tasks may be able to run in parallel with other tasks

• File and metadata management
– Track when a task was run, key parameters

• Resource provisioning (getting cores)
– Computational resources are needed to run jobs on

6

What do we need help with?

• Task executions
– What if something fails in the middle?

• Data and control dependencies
– Make sure inputs are available for tasks
– May have complicated dependencies

• Task scheduling
– Minimize execution time while preserving dependencies

• Metadata
– Automatically capture and track

• Getting cores
7

Workflow Tools

• Define workflow via programming
• Can support all kinds of workflows
• Provide many kinds of fancy features and capabilities

– Flexible but can be complex
• Will focus on Pegasus, but concepts are shared

8

Pegasus-WMS

• Developed at USC’s Information Sciences Institute
• Designed to address our earlier problems:

– Task execution
– Data and control dependencies
– Data and metadata management
– Error recovery

• Uses HTCondor DAGMan for
– Task scheduling
– Resource provisioning

9

Pegasus Concepts

• Separation of “submit host” and “execution site”
– Create workflow using code on your local machine
– Can run on local machine or on distributed resources

• Workflow represented with directed acyclic graphs
• You use API to write code describing workflow

– Python, Java, Perl
– Tasks with parent / child relationships
– Files and their roles
– Can have nested workflows

• Pegasus creates XML file of workflow called a DAX
10

Sample Workflow

11

first_job

simul_job

input.txt

tmp.txt

output.0.dat output.1.dat output.2.dat output.3.dat output.4.dat

simul_job simul_job simul_job simul_job

Sample DAX Generator
//Create DAX object
dax = ADAG("test_dax")
//Define first job
firstJob = Job(name="first_job")
//Input and output files to first job
firstInputFile = File("input.txt")
firstOutputFile = File("tmp.txt")
//Arguments to first_job (first_job input=input.txt output=tmp.txt)
firstJob.addArgument("input=input.txt", "output=tmp.txt")
//Role of the files for the job
firstJob.uses(firstInputFile, link=Link.INPUT)
firstJob.uses(firstOutputFile, link=Link.OUTPUT)
//Add the job to the workflow
dax.addJob(firstJob)

12

for i in range(0, 5):
//Create simulation job
simulJob = Job(id="%s" % (i+1), name="simul_job")
//Define files
simulInputFile = File("tmp.txt")
simulOutputFile = File("output.%d.dat" % i)
//Arguments to job
//simulJob parameter=<i> input=tmp.txt output=output<i>.dat
simulJob.addArgument("parameter=%d" % i, "input=tmp.txt",

"output=%s" % simulOutputFile.getName())
//Role of files
simulJob.uses(simulInputFile, link=Link.INPUT)
simulJob.uses(simulOutputFile, line=Link.OUTPUT)
//Add job to dax
dax.addJob(simulJob)
//Dependency on firstJob
dax.depends(parent=firstJob, child=simulJob)

//Write to file
fp = open("test.dax", "w")
dax.writeXML(fp)
fp.close()

13

Planning
• DAX is “abstract workflow”

– Logical filenames and executables
– Algorithm description

• Prepare workflow to execute on a certain system
• Use Pegasus to “plan” workflow

– Uses catalogs to resolve logical names, compute info
– Pegasus automatically augments workflow

• Stages jobs (if needed) with GridFTP or Globus Online
• Registers output files in a catalog to find later
• Wraps jobs in pegasus-kickstart for detailed statistics

– Generates a DAG
• Top-level workflow description (tasks and dependencies)
• Submission file for each job (HTCondor format)

14

Pegasus Workflow Path

15

Create workflow
description

(you write this)

DAX API

Planning Running

Abstract workflow (DAX)
Logical names, algorithm

Concrete workflow (DAG)
Physical paths, job scripts

Scheduler
(HTCondor)

Jobs
Execute

Running with HTCondor

• Developed by HTCondor group at U of Wisconsin
• Pegasus “submits” workflow to HTCondor DAGMan

– Contains local queue of jobs
– Monitors dependencies
– Schedules jobs to resources
– Automatically retries failed jobs

• Writes rescue DAG to restart if job keeps failing

– Updates status (jobs ready, complete, failed, etc.)
• Can run jobs locally or remotely (cluster, cloud)

– HTCondor-G uses GRAM to submit jobs to remote scheduler

16

GRAM

• Part of the Globus Toolkit
• Uses certificate-based authentication

– Like gsissh, GridFTP, Globus Online
– Requires X509 certificate and account on remote machine

• Enables submission of jobs into a remote queue
• Supported by many HPC resources

– Stampede, Blue Waters, SuperMUC

17

Pegasus/HTCondor/GRAM stack

18

What
you do:

What the
tools do:

Create
workflow

description

Pegasus
HTCondor

Remote
scheduler

local
queue

remote
queue

Local
machine

Remote
machine

DAG

GRAM

Other Workflow Tools

• Regardless of the tool, trying to solve same problems
– Describe your workflow (Pegasus “Create”)
– Prepare your workflow for the execution environment

(Pegasus “Plan”)
– Send jobs to resources (HTCondor, GRAM)
– Monitor the execution of the jobs (HTCondor DAGMan)

• Brief overview of other available tools

19

Other Workflow Tools: Swift
• Similar, but workflow defined via scripting language
• Developed at the University of Chicago

20

//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {

//Print and pipe stdout to t
echo “Hello, world!” stdout=@filename(t);

}
//Create a new messagefile, linked to hello.txt
messagefile outfile <“hello.txt”>
//Run greeting() and store results
outfile = greeting();

• Catalogs used to resolve executables and resources
• Workflow compiled internally and executed

Other Workflow Tools: Askalon
• Developed at

University of Innsbruck
• Similar approach

to Pegasus/HTCondor
– Create workflow description

• Either program in workflow language
• Or use UML editor to graphically create

– Conversion: like planning, to bind to specific execution
– Submit jobs to Enactment Engine, which distributes jobs

for execution at remote grid or cloud sites
– Provides monitoring tools

21

Other Workflow Tools

• WS-PGRADE/gUSE
– Developed at the Hungarian Academy of Sciences
– WS-PGRADE is GUI interface to gUSE services
– Supports “templates”, like OOP inheritance
– Describe workflow, then configure it for execution

• UNICORE
– Maintained by Jülich Supercomputing Center
– GUI interface to describe workflow
– Submit workflow to Gateway which manages execution
– Gateway interfaces with schedulers over the Grid

22

Other Remote Job Tools: SAGA

• These tools only submit remote jobs
– You must check jobs for success and manage dependencies

• Developed at Rutgers University
• Python API for job submission and data transfer
• Interfaces with many scheduler types

23

ctx = saga.Context("ssh“) # Use SSH for authentication
ctx.user_id = "your_username“ # Your identity
session = saga.Session() # Create new session
session.add_context(ctx) # Link session with authentication
Use a PBS adaptor
js = saga.job.Service("pbs+ssh://%s“ % REMOTE_HOST,session=session)
jd = saga.job.Description() # Create description
jd.executable = '/bin/ls‘ # Could include environment, input, output
myjob = js.create_job(jd) # Create job with description and service
myjob.run() # Submit job
myjob.wait() # Wait for completion or error

24

Workflow Application: CyberShake
• What will peak ground motion be over the next 50 years?

– Used in building codes, insurance, government, planning
– Answered via Probabilistic Seismic Hazard Analysis (PSHA)
– Communicated with hazard curves and maps

Hazard curve for downtown LA

2% in 50 years

0.6 g

Probability of exceeding 0.1g in 50 yrs

Seismic Hazard Analysis Calculation
• Tensor simulation

– Create 1.5 billion point mesh with material properties
– Generate tensors across volume
– Parallel, ~8,000 CPU-hrs

25

Post-Processing

• Individual earthquake contributions
– Get list of earthquakes of interest (~415,000)
– Simulate seismograms for each earthquake
– Loosely-coupled, short-running serial jobs

• Combine the levels of shaking with probabilities to
produce a hazard curve.

26

27

Computational Requirements
Component Data Executions Cores/exec Core hours

Mesh generation 15 GB 1 320 50

Tensor simulation 40 GB 2 10,000 CPU
100 GPU

16,000 CPU
1,200 GPU

Tensor extraction 690 GB 6 256 275

Seismogram
synthesis

12 GB 415,000 1 2,300

Curve generation 1 MB 1 1 < 1

Total 757 GB 415,000 18,625

Tensor
Creation

Post
Processing

This is for one location of interest; we wanted to run ~1000

28

Why Scientific Workflows?
• Large-scale, heterogeneous, high throughput

– Parallel and many (~415,000) serial tasks
– Task duration 100 ms – 2 hours

• Automation
• Data management
• Error recovery
• Resource provisioning
• Scalable
• System-independent description

29

CyberShake workflows

Tensor
extraction

Seismogram
synthesis

Seismogram
synthesis

Tensor
extraction

Tensor
simulation .

.

.

x6 x415,000 x1

Seismogram
synthesis

Mesh
generation

Tensor Workflow

x1 x2

Post-Processing Workflow

.

.

.

Hazard
Curve

Challenge: Resource Provisioning

• In tensor workflow, submit job to remote scheduler
– GRAM puts jobs in remote queue
– Runs like a normal batch job
– Can specify either CPU or GPU nodes

• For post-processing workflow, need high throughput
– Putting lots of jobs in the batch queue is ill-advised

• Scheduler isn’t designed for heavy job load
• Scheduler cycle is ~5 minutes
• Policy limits too

• Solution: Pegasus-mpi-cluster (PMC)

30

Pegasus-mpi-cluster
• MPI wrapper around serial or thread-parallel jobs

– Master-worker paradigm
– Preserves dependencies
– HTCondor submits job to multiple nodes, starts PMC
– Specify jobs as usual, Pegasus does wrapping

• Uses intelligent scheduling
– Core counts, memory requirements, priorities
– Locality preferences under development

31

32

Challenge: Data Management

• Millions of data files
– Pegasus provides staging

• Symlinks files if possible, transfers files if needed
• Supports running parts of workflows on separate machines

– Transfers output back to local archival disk
– Pegasus registers data products in catalog
– Cleans up temporary files when no longer needed

• Directory hierarchy to reduce files per directory
• Added automated checks to check integrity

– Correct number of files, NaN, zero-value checks
– Included as new jobs in workflow

Challenge: File System Load

33

• Seismogram tasks cause heavy I/O load
– Reads an earthquake description
– Writes a seismogram file

• Reduce reads
– Generate earthquake description on the fly, from geometry
– Added memcached to cache rupture geometry

• Local memory cache on compute node
• Pegasus-mpi-cluster hook for custom startup script

• Reduce writes
– Pegasus-mpi-cluster supports “pipe forwarding”
– Workers write to pipes, master aggregates to fewer files

CyberShake Study 14.2

• Hazard curves for 1144 sites
• 46,720 CPUs + 225 GPUs for 14 days (Blue Waters)

– Peak of 295,040 CPUs, 1100 GPUs

• 99.8 million tasks executed
– 81 tasks/sec
– Only 31,463 jobs in Blue Waters queue

• On average, 26.2 workflows running concurrently
• Managed 830 TB of data

– 57 TB output files
– 12.3 TB staged back to local disk (~16M files)

• Workflow tools scale!

34

Should you use workflow tools?
• Probably using a workflow already

– Replaces manual hand-offs and polling to monitor
• Provides framework to assemble community codes
• Scales from local computer to large clusters
• Provide portable algorithm description independent

of data
• Does add additional software layers and complexity

– Some development time is required

35

Problems Workflows Solve

• Task executions
– Workflow tools will retry and checkpoint if needed

• Data management
– Stage-in and stage-out data
– Ensure data is available for jobs automatically

• Task scheduling
– Optimal execution on available resources

• Metadata
– Automatically track runtime, environment, arguments, inputs

• Getting cores
– Whether large parallel jobs or high throughput

36

Final Thoughts

• Automation is vital
– Eliminate human polling
– Get everything to run automatically if successful
– Be able to recover from common errors

• Put ALL processing steps in the workflow
– Include validation, visualization, publishing, notifications

• Avoid premature optimization
• Consider new compute environments (dream big!)

– Larger clusters, XSEDE / PRACE, Amazon EC2
• Tool developers want to help you!

37

Links
• SCEC: http://www.scec.org
• Pegasus: http://pegasus.isi.edu
• Pegasus-mpi-cluster: http://pegasus.isi.edu/wms/docs/latest/cli-

pegasus-mpi-cluster.php
• HTCondor: http://www.cs.wisc.edu/htcondor/
• Globus: http://www.globus.org/
• Swift: http://swift-lang.org
• Askalon: http://www.dps.uibk.ac.at/projects/askalon/
• WS-PGRADE: https://guse.sztaki.hu/liferay-portal-6.0.5/
• UNICORE: http://www.unicore.eu/
• SAGA: http://saga-project.github.io/saga-python/
• CyberShake: http://scec.usc.edu/scecpedia/CyberShake

38

Questions?

39

