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Overview

• What are scientific workflows?
• What problems do workflow tools solve?
• Overview of available workflow tools
• CyberShake (seismic hazard application)

– Computational overview
– Challenges and solutions

• Ways to simplify your work
• Goal:  Help you figure out if this would be useful
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Scientific Workflows

• Formal way to express a scientific calculation
• Multiple tasks with dependencies between them
• No limitations on tasks

– Short or long
– Loosely or tightly coupled

• Independence of workflow process and data
– Often, run same workflow with different data

• You use workflows all the time…
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Sample Workflow
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#!/bin/bash
1) Stage-in input data to compute environment
scp myself@datastore.com:/data/input.txt /scratch/input.txt
2) Run a serial job with an input and output
bin/pre-processing in=input.txt out=tmp.txt
3) Run a parallel job with the resulting data
mpiexec bin/parallel-job in=tmp.txt out_prefix=output
4) Run a set of independent serial jobs in parallel – scheduling by hand
for i in `seq 0 $np`; do

bin/integrity-check output.$i &
done
5) While those are running, get metadata and run another serial job
ts=`date +%s`
bin/merge prefix=output out=output.$ts
6) Finally, stage results back to permanent storage
scp /scratch/output.$ts myself@datastore.com:/data/output.$ts



Could think of shell script as a workflow
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Workflow Components

• Task executions
– Specify a series of tasks to run

• Data and control dependencies between tasks
– Outputs from one task may be inputs for another

• Task scheduling
– Some tasks may be able to run in parallel with other tasks

• File and metadata management
– Track when a task was run, key parameters

• Resource provisioning (getting cores)
– Computational resources are needed to run jobs on
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What do we need help with?

• Task executions
– What if something fails in the middle?

• Data and control dependencies
– Make sure inputs are available for tasks
– May have complicated dependencies 

• Task scheduling
– Minimize execution time while preserving dependencies

• Metadata
– Automatically capture and track

• Getting cores
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Workflow Tools

• Define workflow via programming
• Can support all kinds of workflows
• Provide many kinds of fancy features and capabilities

– Flexible but can be complex
• Will focus on Pegasus, but concepts are shared
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Pegasus-WMS

• Developed at USC’s Information Sciences Institute
• Designed to address our earlier problems:

– Task execution
– Data and control dependencies
– Data and metadata management
– Error recovery

• Uses HTCondor DAGMan for
– Task scheduling
– Resource provisioning
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Pegasus Concepts

• Separation of “submit host” and “execution site”
– Create workflow using code on your local machine
– Can run on local machine or on distributed resources

• Workflow represented with directed acyclic graphs
• You use API to write code describing workflow

– Python, Java, Perl
– Tasks with parent / child relationships
– Files and their roles
– Can have nested workflows

• Pegasus creates XML file of workflow called a DAX
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Sample Workflow
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Sample DAX Generator
//Create DAX object
dax = ADAG("test_dax")
//Define first job
firstJob = Job(name="first_job")
//Input and output files to first job
firstInputFile = File("input.txt")
firstOutputFile = File("tmp.txt")
//Arguments to first_job (first_job input=input.txt output=tmp.txt)
firstJob.addArgument("input=input.txt", "output=tmp.txt")
//Role of the files for the job
firstJob.uses(firstInputFile, link=Link.INPUT)
firstJob.uses(firstOutputFile, link=Link.OUTPUT)
//Add the job to the workflow
dax.addJob(firstJob)
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for i in range(0, 5):
//Create simulation job
simulJob = Job(id="%s" % (i+1), name="simul_job")
//Define files
simulInputFile = File("tmp.txt")
simulOutputFile = File("output.%d.dat" % i)
//Arguments to job
//simulJob parameter=<i> input=tmp.txt output=output<i>.dat
simulJob.addArgument("parameter=%d" % i, "input=tmp.txt",

"output=%s" % simulOutputFile.getName())
//Role of files
simulJob.uses(simulInputFile, link=Link.INPUT)
simulJob.uses(simulOutputFile, line=Link.OUTPUT)
//Add job to dax
dax.addJob(simulJob)
//Dependency on firstJob
dax.depends(parent=firstJob, child=simulJob)

//Write to file
fp = open("test.dax", "w")
dax.writeXML(fp)
fp.close()
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Planning
• DAX is “abstract workflow”

– Logical filenames and executables
– Algorithm description

• Prepare workflow to execute on a certain system
• Use Pegasus to “plan” workflow

– Uses catalogs to resolve logical names, compute info
– Pegasus automatically augments workflow

• Stages jobs (if needed) with GridFTP or Globus Online
• Registers output files in a catalog to find later
• Wraps jobs in pegasus-kickstart for detailed statistics

– Generates a DAG
• Top-level workflow description (tasks and dependencies)
• Submission file for each job (HTCondor format)

14



Pegasus Workflow Path
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Running with HTCondor

• Developed by HTCondor group at U of Wisconsin
• Pegasus “submits” workflow to HTCondor DAGMan

– Contains local queue of jobs
– Monitors dependencies
– Schedules jobs to resources 
– Automatically retries failed jobs

• Writes rescue DAG to restart if job keeps failing

– Updates status (jobs ready, complete, failed, etc.)
• Can run jobs locally or remotely (cluster, cloud)

– HTCondor-G uses GRAM to submit jobs to remote scheduler
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GRAM

• Part of the Globus Toolkit
• Uses certificate-based authentication

– Like gsissh, GridFTP, Globus Online
– Requires X509 certificate and account on remote machine

• Enables submission of jobs into a remote queue
• Supported by many HPC resources

– Stampede, Blue Waters, SuperMUC
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Pegasus/HTCondor/GRAM stack
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Other Workflow Tools

• Regardless of the tool, trying to solve same problems
– Describe your workflow (Pegasus “Create”)
– Prepare your workflow for the execution environment 

(Pegasus “Plan”)
– Send jobs to resources (HTCondor, GRAM)
– Monitor the execution of the jobs (HTCondor DAGMan)

• Brief overview of other available tools
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Other Workflow Tools: Swift
• Similar, but workflow defined via scripting language
• Developed at the University of Chicago
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//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {

//Print and pipe stdout to t
echo “Hello, world!” stdout=@filename(t);

}
//Create a new messagefile, linked to hello.txt
messagefile outfile <“hello.txt”>
//Run greeting() and store results
outfile = greeting();

• Catalogs used to resolve executables and resources
• Workflow compiled internally and executed



Other Workflow Tools: Askalon
• Developed at

University of Innsbruck
• Similar approach

to Pegasus/HTCondor
– Create workflow description

• Either program in workflow language
• Or use UML editor to graphically create

– Conversion: like planning, to bind to specific execution
– Submit jobs to Enactment Engine, which distributes jobs 

for execution at remote grid or cloud sites
– Provides monitoring tools
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Other Workflow Tools

• WS-PGRADE/gUSE
– Developed at the Hungarian Academy of Sciences
– WS-PGRADE is GUI interface to gUSE services
– Supports “templates”, like OOP inheritance
– Describe workflow, then configure it for execution

• UNICORE
– Maintained by Jülich Supercomputing Center
– GUI interface to describe workflow
– Submit workflow to Gateway which manages execution
– Gateway interfaces with schedulers over the Grid
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Other Remote Job Tools: SAGA

• These tools only submit remote jobs
– You must check jobs for success and manage dependencies

• Developed at Rutgers University
• Python API for job submission and data transfer
• Interfaces with many scheduler types
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ctx = saga.Context("ssh“) # Use SSH for authentication
ctx.user_id = "your_username“ # Your identity
session = saga.Session() # Create new session
session.add_context(ctx) # Link session with authentication
# Use a PBS adaptor
js = saga.job.Service("pbs+ssh://%s“ % REMOTE_HOST,session=session)
jd = saga.job.Description() # Create description
jd.executable = '/bin/ls‘ # Could include environment, input, output
myjob = js.create_job(jd) # Create job with description and service
myjob.run() # Submit job
myjob.wait() # Wait for completion or error
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Workflow Application:  CyberShake
• What will peak ground motion be over the next 50 years?

– Used in building codes, insurance, government, planning
– Answered via Probabilistic Seismic Hazard Analysis (PSHA)
– Communicated with hazard curves and maps

Hazard curve for downtown LA

2% in 50 years

0.6 g

Probability of exceeding 0.1g in 50 yrs



Seismic Hazard Analysis Calculation
• Tensor simulation

– Create 1.5 billion point mesh with material properties
– Generate tensors across volume
– Parallel, ~8,000 CPU-hrs
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Post-Processing

• Individual earthquake contributions
– Get list of earthquakes of interest (~415,000)
– Simulate seismograms for each earthquake
– Loosely-coupled, short-running serial jobs

• Combine the levels of shaking with probabilities to 
produce a hazard curve.
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Computational Requirements
Component Data Executions Cores/exec Core hours

Mesh generation 15 GB 1 320 50

Tensor simulation 40 GB 2 10,000 CPU
100 GPU

16,000 CPU
1,200 GPU

Tensor extraction 690 GB 6 256 275

Seismogram
synthesis

12 GB 415,000 1 2,300

Curve generation 1 MB 1 1 < 1

Total 757 GB 415,000 18,625

Tensor 
Creation

Post 
Processing

This is for one location of interest; we wanted to run ~1000
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Why Scientific Workflows?
• Large-scale, heterogeneous, high throughput

– Parallel and many (~415,000) serial tasks
– Task duration 100 ms – 2 hours

• Automation
• Data management
• Error recovery
• Resource provisioning
• Scalable
• System-independent description
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CyberShake workflows
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Challenge:  Resource Provisioning

• In tensor workflow, submit job to remote scheduler
– GRAM puts jobs in remote queue
– Runs like a normal batch job
– Can specify either CPU or GPU nodes

• For post-processing workflow, need high throughput
– Putting lots of jobs in the batch queue is ill-advised

• Scheduler isn’t designed for heavy job load
• Scheduler cycle is ~5 minutes
• Policy limits too

• Solution: Pegasus-mpi-cluster (PMC)
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Pegasus-mpi-cluster
• MPI wrapper around serial or thread-parallel jobs

– Master-worker paradigm
– Preserves dependencies
– HTCondor submits job to multiple nodes, starts PMC
– Specify jobs as usual, Pegasus does wrapping

• Uses intelligent scheduling
– Core counts, memory requirements, priorities
– Locality preferences under development
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Challenge:  Data Management

• Millions of data files
– Pegasus provides staging

• Symlinks files if possible, transfers files if needed
• Supports running parts of workflows on separate machines

– Transfers output back to local archival disk
– Pegasus registers data products in catalog
– Cleans up temporary files when no longer needed

• Directory hierarchy to reduce files per directory
• Added automated checks to check integrity

– Correct number of files, NaN, zero-value checks
– Included as new jobs in workflow



Challenge:  File System Load
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• Seismogram tasks cause heavy I/O load
– Reads an earthquake description
– Writes a seismogram file

• Reduce reads
– Generate earthquake description on the fly, from geometry
– Added memcached to cache rupture geometry

• Local memory cache on compute node
• Pegasus-mpi-cluster hook for custom startup script

• Reduce writes
– Pegasus-mpi-cluster supports “pipe forwarding”
– Workers write to pipes, master aggregates to fewer files



CyberShake Study 14.2

• Hazard curves for 1144 sites
• 46,720 CPUs + 225 GPUs for 14 days (Blue Waters)

– Peak of 295,040 CPUs, 1100 GPUs

• 99.8 million tasks executed
– 81 tasks/sec
– Only 31,463 jobs in Blue Waters queue

• On average, 26.2 workflows running concurrently
• Managed 830 TB of data

– 57 TB output files
– 12.3 TB staged back to local disk (~16M files)

• Workflow tools scale!
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Should you use workflow tools?
• Probably using a workflow already

– Replaces manual hand-offs and polling to monitor
• Provides framework to assemble community codes
• Scales from local computer to large clusters
• Provide portable algorithm description independent 

of data
• Does add additional software layers and complexity

– Some development time is required
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Problems Workflows Solve

• Task executions
– Workflow tools will retry and checkpoint if needed

• Data management
– Stage-in and stage-out data
– Ensure data is available for jobs automatically

• Task scheduling
– Optimal execution on available resources

• Metadata
– Automatically track runtime, environment, arguments, inputs

• Getting cores
– Whether large parallel jobs or high throughput
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Final Thoughts

• Automation is vital
– Eliminate human polling
– Get everything to run automatically if successful
– Be able to recover from common errors

• Put ALL processing steps in the workflow
– Include validation, visualization, publishing, notifications

• Avoid premature optimization
• Consider new compute environments (dream big!)

– Larger clusters, XSEDE / PRACE, Amazon EC2
• Tool developers want to help you!
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Links
• SCEC:  http://www.scec.org
• Pegasus:  http://pegasus.isi.edu
• Pegasus-mpi-cluster:  http://pegasus.isi.edu/wms/docs/latest/cli-

pegasus-mpi-cluster.php
• HTCondor: http://www.cs.wisc.edu/htcondor/
• Globus:  http://www.globus.org/
• Swift:  http://swift-lang.org
• Askalon:  http://www.dps.uibk.ac.at/projects/askalon/
• WS-PGRADE:  https://guse.sztaki.hu/liferay-portal-6.0.5/
• UNICORE:  http://www.unicore.eu/
• SAGA:  http://saga-project.github.io/saga-python/
• CyberShake: http://scec.usc.edu/scecpedia/CyberShake
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Questions?
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