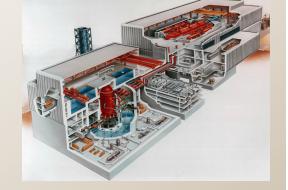

The State of the Computer Program SASSI



2015 SCEC SSI Workshop University of Southern California January 29, 2015

Farhang Ostadan
Bechtel Corporation

Computer Program SASSI - Acknowledgement

SASSI

A SYSTEM FOR ANALYSIS OF

SOIL-STRUCTURE INTERACTION

by

J. Lysmer M. Tabatabaie-Raissi

F. Tajirian

5. vandanı F. Ostadan

Report No. UCB/GT/81-02

April 1981

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF CALIFORNIA . BERKELEY

SASSI2000 Included C C Chin

SASSI2010 Included Nan Deng

SUBSTRUCTURING METHODS

FINITE ELEMENT SUBSTRUCTURING METHODS

- Rigid boundary methods
- Flexible boundary methods
- Flexible volume method
- Subtraction method

SUBSTRUCTURING METHODS

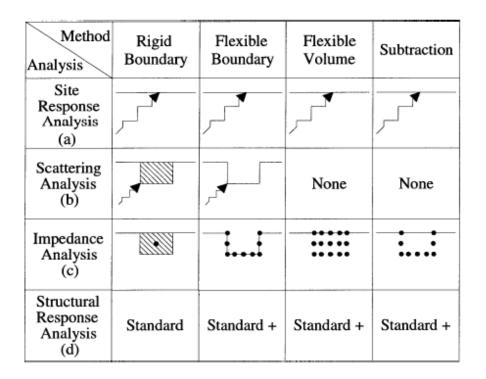


Figure 2.1-1. Summary of Substructuring Methods

SASSI

EXPLANATION
s = Superstructure Node

i = Basement Node i = Excavated Soil Volume E = Excavated Soil Volume Structure Minus Excavated Soil (a) Total System Foundation (c) Structure

Substructuring in the Flexible Volume Method

SASSI

EQUATION OF MOTION

- SEISMIC CASE

$$\begin{bmatrix} \mathbf{C}_{\mathrm{ss}} & \mathbf{C}_{\mathrm{si}} \\ \mathbf{C}_{\mathrm{is}} & \mathbf{C}_{\mathrm{ii}} - \mathbf{C}_{\mathrm{ff}} + \mathbf{X}_{\mathrm{ff}} \end{bmatrix} \quad \left\{ \begin{array}{c} \mathbf{U}_{\mathrm{s}} \\ \mathbf{U}_{\mathrm{f}} \end{array} \right\} \quad = \quad \left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{X}_{\mathrm{ff}} \cdot \mathbf{U}_{\mathrm{f}} \end{array} \right\}$$

- Force Vibration Case

$$\begin{bmatrix} \mathbf{C}_{\mathrm{ss}} & \mathbf{C}_{\mathrm{si}} \\ \\ \mathbf{C}_{\mathrm{is}} & \mathbf{C}_{\mathrm{ii}} - \mathbf{C}_{\mathrm{ff}} + \mathbf{X}_{\mathrm{ff}} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathrm{s}} \\ \\ \mathbf{U}_{\mathrm{f}} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{\mathrm{s}} \\ \\ \mathbf{P}_{\mathrm{f}} \end{bmatrix}$$

$$C = K - \omega^2 M$$

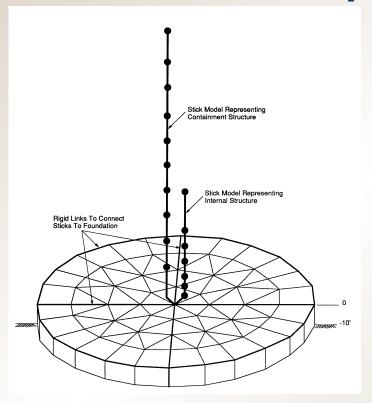
SASSI – Recent Developments

- Extensive verification of SASSI program Ongoing work by the DOE Committee
 - ✓ Draft 2000-page report has been issued
 - ✓ Final report due in 2015
 - ✓ Guidance on the limitation of the parameters and use of SASSI features
 - ✓ No major findings
- SASSI2010, an improved solver, mufti-core operation, can handle very large models
- Implemented incoherency formulation
- Implemented random vibration theory

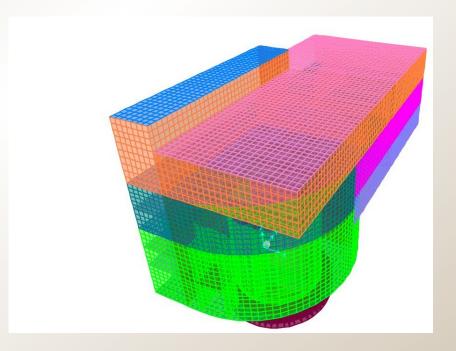
SASSI: Capabilities/Limitations

- Complete SSI analysis (free-field to SSI responses)
- Two- and three-dimensional SSI problems
- Rigid or flexible embedded foundation of any shape
- Structure-to-structure interaction
- Foundation with pile groups and battered piles
- Seismic waves, vertical and inclined body waves and surface waves
- Incoherent ground motion
- RVT using response spectrum as input
- Direct impact loading or harmonic loading
- Nonlinear analysis limited to equivalent linear modeling
- No nonlinear interface modeling
- No structural nonlinear modeling
- Two steps analysis is used for nonlinear analysis

SASSI


SASSI continues to be used as the seismic SSI preferred code for nuclear and heavy industry

The state of the computer program SASSI is strong



Large 3D Models

1980s-CDC and Cray

Now, Desktop

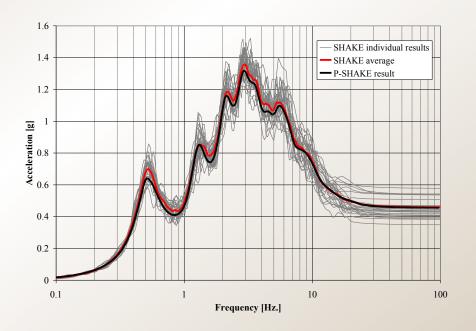
Challenges

- We all know that bigger is not necessarily better
- We also witness the trend that no big model is big enough
- SSI analysis is a complex analysis and experienced indepth review of the results is lacking in practice

...the basics apply to the most sophisticated structures

Ben Gerwick, Jr., 1988

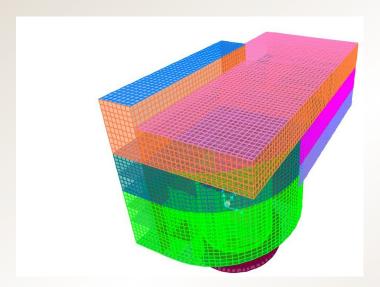
(1919-2006)

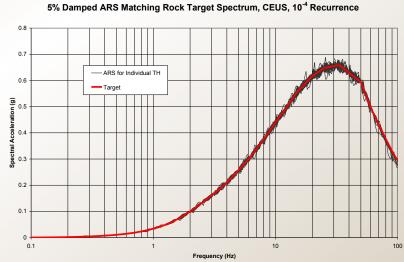


SHAKE TH Approach

- ✓ 30 seed THs are selected and matched to the target spectrum. All THs are statistically independent
- ✓ Site response analysis are repeated 30 times using each of the matched time histories

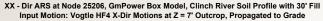
P-SHAKE RVT Approach

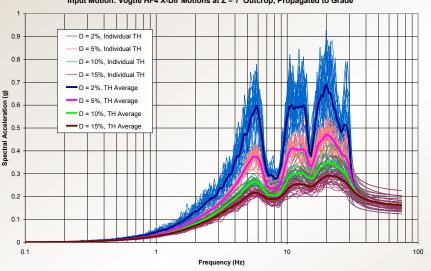

- ✓ For each soil profile, one site response analysis is performed using the target spectrum as input
- RVT approach is now widely used for site response analysis in the nuclear industry

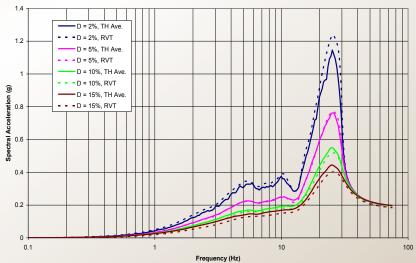


Deeply embedded nuclear structure

30 time histories matched to the design response spectrum



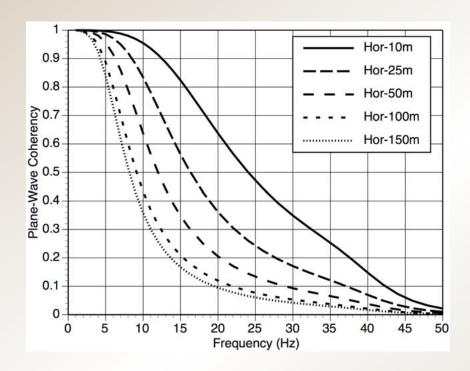


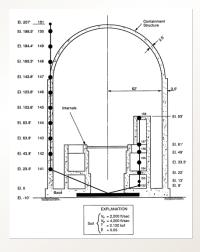

Range of time history results

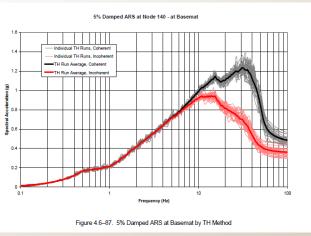
RVT

XX Dir ARS at Node 2225, GmPower Box Model, Clinch River Soil Profile with 30' Fill Input Motion: Vogtle HF4 X-Dir Motions at Z = 7' Outcrop, Propagated to Grade

- The new ASCE 4-2015 recommends to use at least 5 time histories for SSI analysis
- The new SRP 3.7.1 Rev 4 requires PSD check on the time history in addition to spectral matching requirements
- RVT can resolve many of the time history issues




Incoherency- Research Need


- EPRI report 1015110, December 2007 (Norman Abrahamson)
- The model developed based on recorded motion for rock sites was accepted by NRC and ASCE 4 committee
- Implementation of the model in SASSI and CLASSI was approved by NRC
- Currently the model is used for SSI analysis of NPP on firm or rock sites with CEUS design motion

Incoherency- Research Need

Incoherency- Research Need

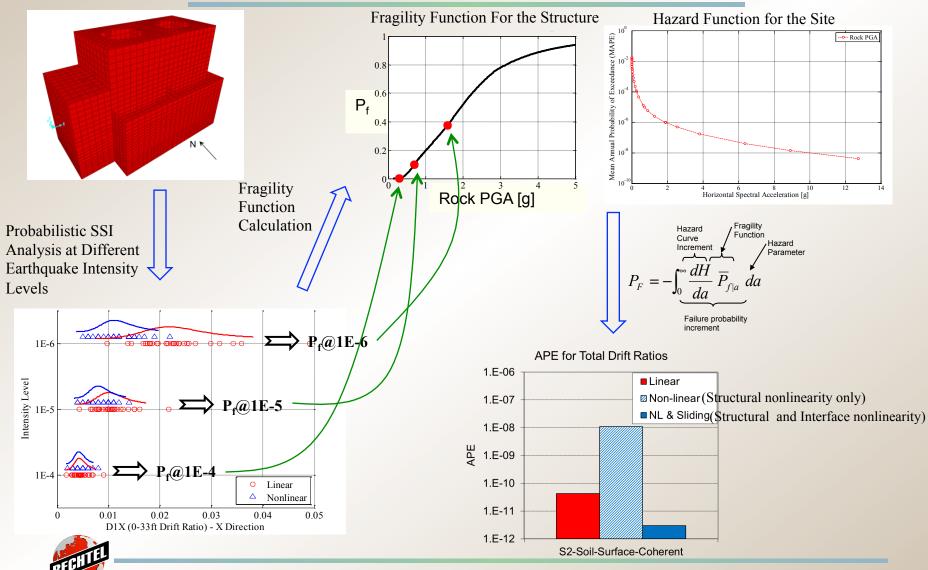
- The ground motion model is based on recorded data, need to address incoherency in vertical direction
- NRC has limited the reduction at high frequency to 30%
- Need recorded motions on basemat of various sizes for calibration
- Ideal condition: rock or firm soil sites, high frequency ground motion

Challenges for Nonlinear SSI Analysis

- SASSI is a linear program and is using equivalent linear analysis to handle soil nonlinearity
- NPP sites are competent sites(static foundation pressure ranges from 10 KSF to 20 KSF)
- Sites with liquefaction potential are avoided
- Large soil nonlinearity is not expected
- Nonlinearity becomes important at the soil-foundation interface for beyond design events

Challenges for Nonlinear SSI Analysis

- SASSI is a linear program and is using equivalent linear analysis to handle soil nonlinearity
- NPP sites are competent sites(static foundation pressure ranges from 10 KSF to 20 KSF)
- Sites with liquefaction potential are avoided
- Large soil nonlinearity is not expected
- Nonlinearity becomes important at the soil-foundation interface for beyond design events


Seismic Hazard and Risk Reevaluation for all Operating Plants (about 104)

- Following the Fukushima event in 2011 and recommendation of the NFFT task force, US NRC 50.54(f) Request for Information Letter Issued in March 12, 2012
- Requested specific deliverables and process
 - ✓ Hazard evaluation information
 - √ Risk evaluation information (if necessary)
 - √Spent fuel pool analysis
- All operating plants in CEUS have submitted the new ground motion at their sites in March 2014, about 2/3 are performing SPRA now
- The 3 plants in WUS are submitting the ground motion in March 2015

Soil-Structure Interface Modeling

Soil-Structure Interface Modeling

Need development in the following areas for a more realistic modeling of the interface condition for beyond design events:

- Test data for modeling interface sliding behavior under static and dynamic loads (stiffness and damping)
- Test data for modeling interface condition for embedded structures
- Test data for uplift behavior and subsequent impact load

Wave Field for Deeply Embedded Structures

- Current NPP designs have shallow embedment (40 ft) and foundation pressures ranging from 10 ksf to 20 ksf
- Seismic SSI results are controlled by the inertia effects
- The vertically propagation (SV and P) for SSI analysis is generally adequate for design
- New designs for modular reactors are deeply embedded (70 ft to 150 ft)
- The foundation pressure is in the range 4 ksf to 6 ksf

Wave Field for Deeply Embedded Structures

- For deeply embedded structures, kinematic interaction controls the response
- Ground motion and its variation over the embedment depth is much more important
- The opportunity for inclined waves to become vertical (Snell's law) is reduced with deeper embedment depth
- Choice of wave fields also play a significant role in the kinematic effects

Wave Field for Deeply Embedded Structures

Areas for development:

- More realistic assessment of the wave field (numerical modeling of source to site)
- Definition of the input motion (control point, control motion) and checking adequacy of the input motion for SSI analysis
- NRC adopted a revision to the current criteria for SSI analysis for deeply embedded structures to control the ground motion within the embedment depth of the structure

Thank You Comments/Questions

