Simulation Based Earthquake Forecasting with RSQSim

Jacqui Gilchrist

Tom Jordan (USC/SCEC), Jim Dieterich (UCR), Keith Richards-Dinger (UCR), Bruce Shaw (Columbia), and Kevin Milner (USC/SCEC)

> SSA Annual Meeting April 18th, 2017 – Denver, CO

Main Objectives

- Develop a physics-based forecasting model for earthquake rupture in California
 - Produce a suite of catalogs (~50) to investigate the epistemic uncertainty in the physical parameters used in the simulations.
 - One million years of simulated time
 - Several million M4-M8 events
 - Varied simulation parameters and fault models
 - Compare with other models (UCERF3) to see what we can learn from the differences.

RSQSim: Rate-State earthQuake Simulator

(Dieterich & Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012)

- Multi-cycle earthquake simulations (full cycle model)
 - Interseismic period -> nucleation and rupture propagation
- Long catalogs
 - Tens of thousands to millions of years with millions of events
- Complicated model geometry
 - 3D fault geometry; rectangular or triangular boundary elements
- Different types of fault slip
 - Earthquakes, slow slip events, continuous creep, and afterslip
- Physics based
 - Rate- and State-dependent friction
- Foreshocks, aftershocks, and earthquake sequences
- Efficient algorithm
 - Event driven time steps
 - Quasi-dynamic rupture propagation

California Earthquake Forecasting Models

Reid renewal

Omori-Utsu clustering

Use of simulations for long-term assessment of earthquake probabilities

Components of the Uniform California Earthquake Rupture Forecast

RSQSim Calibration

- Develop a model that generates an earthquake catalog that matches observed California seismicity as closely as possible.
 - The UCERF3 data set is used for calibration, and cross-validation of the model, as well as specification of fault geometry.
 - Fault Model
 - Long-Term Slip Rates
 - Recurrence Intervals

Calibration: Faults & Long-term Slip Rates

Fault geometry and geologic slip rates from UCERF3 **High-resolution Model** 260,000+, 1 km², triangular patches ~M4-M8 events 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Long Term Slip Rate (cm/yr)

Simulation Parameters

• Rate- and State-friction Parameters

• *a, b,* and *Dc* (rate and state coefficients, and the critical slip distance)

• Other Model Parameters

- τ and σ (shear and normal stresses)
- Earthquake slip rate

• Adding heterogeneity of parameters

- Vary *a*, *b*, and σ with depth
- Adding deep creeping segments

Parameter Sensitivity Tests

Calibration: Mean Recurrence Intervals

Result From Two MRI Calibration Rounds

Result From Two MRI Calibration Rounds

Result From Two MRI Calibration Rounds

NSAF Santa Cruz

Magnitude 7 on the San Andreas Fault in the Mojave is followed by another Magnitude 7 within a week.

Event # 1: M = 7.1 (Nucleated on SanAndreas(MojaveS), Subsection 11)

- Using RSQSim to develop a physics-based forecasting model for earthquakes in California.
- Initial calibration and validation tests are promising (but we still have some work to do on the model).
- Initial results illustrate how rupture simulators might assist forecasters in understanding the hazards due to multi-event sequences and complex faulting.

Thank you!