
1

Simplify Your Science with
Workflow Tools

Scott Callaghan
Southern California Earthquake Center
University of Southern California
scottcal@usc.edu

International HPC Summer School
June 28, 2016

Overview

• What are scientific workflows?
• What problems do workflow tools solve?
• Overview of available workflow tools
• CyberShake (seismic hazard application)

– Computational overview
– Challenges and solutions

• Ways to simplify your work
• Goal: Help you figure out if this would be useful

2

Scientific Workflows

• Formal way to express a scientific calculation
• Multiple tasks with dependencies between them
• No limitations on tasks

– Short or long
– Loosely or tightly coupled

• Capture task parameters, input, output
• Independence of workflow process and data

– Often, run same workflow with different data
• You use workflows all the time…

3

Sample Workflow

4

#!/bin/bash
1) Stage-in input data to compute environment
scp myself@datastore.com:/data/input.txt /scratch/input.txt
2) Run a serial job with an input and output
bin/pre-processing in=input.txt out=tmp.txt
3) Run a parallel job with the resulting data
mpiexec bin/parallel-job in=tmp.txt out_prefix=output
4) Run a set of independent serial jobs in parallel – scheduling by hand
for i in `seq 0 $np`; do

bin/integrity-check output.$i &
done
5) While those are running, get metadata and run another serial job
ts=`date +%s`
bin/merge prefix=output out=output.$ts
6) Finally, stage results back to permanent storage
scp /scratch/output.$ts myself@datastore.com:/data/output.$ts

Workflow schematic of shell script

5

stage-in parallel-
job

pre-
processing merge stage-out

date

integrity-
check

input.txt

input.txt tmp.txt output.*

output.$ts

output.$ts

Workflow Components

• Task executions
– Specify a series of tasks to run

• Data and control dependencies between tasks
– Outputs from one task may be inputs for another

• Task scheduling
– Some tasks may be able to run in parallel with other tasks

• File and metadata management
– Track when a task was run, key parameters

• Resource provisioning (getting cores)
– Computational resources are needed to run jobs on

6

What do we need help with?

• Task executions
– What if something fails in the middle?

• Data and control dependencies
– Make sure inputs are available for tasks
– May have complicated dependencies

• Task scheduling
– Minimize execution time while preserving dependencies

• Metadata
– Automatically capture and track

• Getting cores
7

Workflow Tools

• Define workflow via programming or GUI
• Can support all kinds of workflows
• Use existing code (no changes)
• Automate your pipeline
• Provide many kinds of fancy features and capabilities

– Flexible but can be complex
• Will discuss one set of tools (Pegasus) as example,

but concepts are shared

8

Pegasus-WMS

• Developed at USC’s Information Sciences Institute
• Used for many domains, including LIGO project
• Designed to address our earlier problems:

– Task execution
– Data and control dependencies
– Data and metadata management
– Error recovery

• Uses HTCondor DAGMan for
– Task scheduling
– Resource provisioning

9

Pegasus Concepts

• Separation of “submit host” and “execution site”
– Create workflow using code on your local machine
– Can run on local machine or on distributed resources

• Workflow represented with directed acyclic graphs
• You use API to write code describing workflow

– Python, Java, Perl
– Tasks with parent / child relationships
– Files and their roles
– Can have nested workflows

• Pegasus creates XML file of workflow called a DAX
10

Sample Workflow

11

my_job

input.txt

output.txt

//Create DAX object
dax = ADAG("test_dax")
//Define my job
myJob = Job(name="my_job")
//Input and output files to my job
inputFile = File("input.txt")
outputFile = File("output.txt")
//Arguments to my_job (./my_job input=input.txt

output=output.txt)
myJob.addArgument("input=input.txt",

"output=output.txt")
//Role of the files for the job
myJob.uses(inputFile, link=Link.INPUT)
myJob.uses(outputFile, link=Link.OUTPUT)
//Add the job to the workflow
dax.addJob(myJob)
//Write to file
fp = open("test.dax", "w")
dax.writeXML(fp)
fp.close()

Planning
• DAX is “abstract workflow”

– Logical filenames and executables
– Algorithm description

• Prepare workflow to execute on a certain system
• Use Pegasus to “plan” workflow

– Uses catalogs to resolve logical names, compute info
– Pegasus automatically augments workflow

• Staging jobs (if needed) with GridFTP or Globus Online
• Registers output files in a catalog to find later
• Wraps jobs in pegasus-kickstart for detailed statistics

– Generates a DAG
• Top-level workflow description (tasks and dependencies)
• Submission file for each job (HTCondor format)

12

Pegasus Workflow Path

13

Create workflow
description

(you write this)

DAX API

Planning Running

Abstract workflow (DAX)
Logical names, algorithm

Concrete workflow (DAG)
Physical paths, job scripts

Scheduler
(HTCondor)

Jobs
Execute

Other tools in stack

• HTCondor (UW Madison)
– Pegasus ‘submits’ workflow to HTCondor
– Supervises runtime execution of DAG files

• Maintains queue
• Monitors dependencies
• Schedules jobs
• Retries failures
• Writes checkpoint

• GRAM (Globus Toolkit)
– Uses certificate-based authentication for remote job

submission
– Supported by many HPC resources

14

Pegasus/HTCondor/GRAM stack

15

What
you do:

What the
tools do:

Create
workflow

description

Pegasus
HTCondor

Remote
scheduler

local
queue

remote
queue

Local
machine

Remote
machine

DAG

GRAM

Other Workflow Tools

• Regardless of the tool, trying to solve same problems
– Describe your workflow (Pegasus “Create”)
– Prepare your workflow for the execution environment

(Pegasus “Plan”)
– Send jobs to resources (HTCondor, GRAM)
– Monitor the execution of the jobs (HTCondor DAGMan)

• Brief overview of some other available tools

16

Other Workflow Tools: Swift
• Similar, but workflow defined via scripting language
• Developed at the University of Chicago

17

//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {

//Print and pipe stdout to t
echo “Hello, world!” stdout=@filename(t);

}
//Create a new messagefile, linked to hello.txt
messagefile outfile <“hello.txt”>
//Run greeting() and store results
outfile = greeting();

• Workflow compiled internally and executed
• Focus on large data, many tasks

Other Workflow Tools: Askalon
• Developed at

University of Innsbruck
• Similar approach

to Pegasus/HTCondor
– Create workflow description

• Either program in workflow language
• Or use UML editor to graphically create

– Conversion: like planning, to bind to specific execution
– Submit jobs to Enactment Engine, which distributes jobs

for execution at remote grid or cloud sites
– Provides monitoring tools

18

Other Workflow Tools

• Kepler (diverse US collaboration)
– GUI interface
– Many models of computation (‘actors’)
– Many built-in components (tasks) already

• WS-PGRADE/gUSE (Hungarian Academy of Sciences)
– WS-PGRADE is GUI interface to gUSE services
– Supports “templates”, like OOP inheritance, for parameter sweeps
– Interfaces with many architectures

• UNICORE (Jülich Supercomputing Center)
– GUI interface to describe workflow
– Branches, loops, parallel loops

• Many more: ask me about specific use cases
19

20

Workflow Application: CyberShake
• What will peak ground motion be over the next 50 years?

– Used in building codes, insurance, government, planning
– Answered via Probabilistic Seismic Hazard Analysis (PSHA)
– Communicated with hazard curves and maps

Hazard curve for downtown LA

2% in 50 years

0.6 g

Probability of exceeding 0.1g in 50 yrs

CyberShake Computational Requirements

• Determine shaking due to ~500,000 earthquakes per
site of interest

• Large parallel jobs
– 2 GPU wave propagation jobs, 800 nodes x 1 hour
– Total of 1.5 TB output

• Small serial jobs
– 500,000 seismogram calculation jobs, 1 core x 4.7 minutes
– Total of 30 GB output

• Need ~300 sites for hazard map

21

22

Why Scientific Workflows?
• Large-scale, heterogeneous, high throughput

– Parallel and many serial tasks
– Task duration 100 ms – 1 hour

• Automation
• Data management
• Error recovery
• Resource provisioning
• Scalable
• System-independent description

Challenge: Resource Provisioning

• For large parallel jobs, submit to remote scheduler
– GRAM puts jobs in remote queue
– Runs like a normal batch job
– Can specify either CPU or GPU nodes

• For small serial jobs, need high throughput
– Putting lots of jobs in the batch queue is ill-advised

• Scheduler isn’t designed for heavy job load
• Scheduler cycle is ~5 minutes
• Policy limits too

• Solution: Pegasus-mpi-cluster (PMC)

23

Pegasus-mpi-cluster
• MPI wrapper around serial or thread-parallel jobs

– Master-worker paradigm
– Preserves dependencies
– HTCondor submits job to multiple nodes, starts PMC
– Specify jobs as usual, Pegasus does wrapping

• Uses intelligent scheduling
– Core counts
– Memory requirements
– Priorities

• Can combine writes
– Workers write to master, master aggregates to fewer files

24

25

Challenge: Data Management
• Millions of data files

– Pegasus provides staging
• Symlinks files if possible, transfers files if needed
• Supports running parts of workflows on separate machines

– Transfers output back to local archival disk
– Pegasus registers data products in catalog
– Cleans up temporary files when no longer needed

• Directory hierarchy to reduce files per directory
• Added automated checks to check integrity

– Correct number of files, NaN, zero-value checks
– Included as new jobs in workflow

CyberShake Study 15.4

• Hazard curves for 336 sites
• Used OLCF Titan and NCSA Blue Waters

– Pegasus transferred 408 TB of intermediate data

• Averaged 1962 nodes (CPUs and GPUs) for 35 days
– Max of 20% of Blue Waters, 80% of Titan

26

• Generated 170 million seismograms
– 4372 jobs in queues

• On average, 10 site workflows
running concurrently

• Managed 1.1 PB of data
– 7.7 TB staged back to local disk (~7M files)

• Workflow tools scale!

Problems Workflows Solve

• Task executions
– Workflow tools will retry and checkpoint if needed

• Data management
– Stage-in and stage-out data
– Ensure data is available for jobs automatically

• Task scheduling
– Optimal execution on available resources

• Metadata
– Automatically track runtime, environment, arguments, inputs

• Getting cores
– Whether large parallel jobs or high throughput

27

Should you use workflow tools?
• Probably using a workflow already

– Replaces manual hand-offs and polling to monitor
• Provides framework to assemble community codes
• Scales from local computer to large clusters
• Provide portable algorithm description independent

of data
• Does add additional software layers and complexity

– Some development time is required

28

Final Thoughts

• Automation is vital
– Eliminate human polling
– Get everything to run automatically if successful
– Be able to recover from common errors

• Put ALL processing steps in the workflow
– Include validation, visualization, publishing, notifications

• Avoid premature optimization
• Consider new compute environments (dream big!)

– Larger clusters, XSEDE/PRACE/RIKEN/CC, Amazon EC2
• Tool developers want to help you!

29

Links
• SCEC: http://www.scec.org
• Pegasus: http://pegasus.isi.edu
• Pegasus-mpi-cluster: http://pegasus.isi.edu/wms/docs/latest/cli-

pegasus-mpi-cluster.php
• HTCondor: http://www.cs.wisc.edu/htcondor/
• Globus: http://www.globus.org/
• Swift: http://swift-lang.org
• Askalon: http://www.dps.uibk.ac.at/projects/askalon/
• Kepler: https://kepler-project.org/
• WS-PGRADE: https://guse.sztaki.hu/liferay-portal-6.0.5/
• UNICORE: http://www.unicore.eu/
• CyberShake: http://scec.usc.edu/scecpedia/CyberShake

30

Questions?

31

