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Overview

• What are scientific workflows?
• What problems do workflow tools solve?
• Overview of available workflow tools
• CyberShake (seismic hazard application)

– Computational overview
– Challenges and solutions

• Ways to simplify your work
• Goal:  Help you figure out if this would be useful
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Scientific Workflows

• Formal way to express a scientific calculation
• Multiple tasks with dependencies between them
• No limitations on tasks

– Short or long
– Loosely or tightly coupled

• Capture task parameters, input, output
• Independence of workflow process and data

– Often, run same workflow with different data
• You use workflows all the time…
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Sample Workflow
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#!/bin/bash
1) Stage-in input data to compute environment
scp myself@datastore.com:/data/input.txt /scratch/input.txt
2) Run a serial job with an input and output
bin/pre-processing in=input.txt out=tmp.txt
3) Run a parallel job with the resulting data
mpiexec bin/parallel-job in=tmp.txt out_prefix=output
4) Run a set of independent serial jobs in parallel – scheduling by hand
for i in `seq 0 $np`; do

bin/integrity-check output.$i &
done
5) While those are running, get metadata and run another serial job
ts=`date +%s`
bin/merge prefix=output out=output.$ts
6) Finally, stage results back to permanent storage
scp /scratch/output.$ts myself@datastore.com:/data/output.$ts



Workflow schematic of shell script
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Workflow Components

• Task executions
– Specify a series of tasks to run

• Data and control dependencies between tasks
– Outputs from one task may be inputs for another

• Task scheduling
– Some tasks may be able to run in parallel with other tasks

• File and metadata management
– Track when a task was run, key parameters

• Resource provisioning (getting cores)
– Computational resources are needed to run jobs on
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What do we need help with?

• Task executions
– What if something fails in the middle?

• Data and control dependencies
– Make sure inputs are available for tasks
– May have complicated dependencies 

• Task scheduling
– Minimize execution time while preserving dependencies

• Metadata
– Automatically capture and track

• Getting cores
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Workflow Tools

• Define workflow via programming or GUI
• Can support all kinds of workflows
• Use existing code (no changes)
• Automate your pipeline
• Provide many kinds of fancy features and capabilities

– Flexible but can be complex
• Will discuss one set of tools (Pegasus) as example, 

but concepts are shared
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Pegasus-WMS

• Developed at USC’s Information Sciences Institute
• Used for many domains, including LIGO project
• Designed to address our earlier problems:

– Task execution
– Data and control dependencies
– Data and metadata management
– Error recovery

• Uses HTCondor DAGMan for
– Task scheduling
– Resource provisioning
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Pegasus Concepts

• Separation of “submit host” and “execution site”
– Create workflow using code on your local machine
– Can run on local machine or on distributed resources

• Workflow represented with directed acyclic graphs
• You use API to write code describing workflow

– Python, Java, Perl
– Tasks with parent / child relationships
– Files and their roles
– Can have nested workflows

• Pegasus creates XML file of workflow called a DAX
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Sample Workflow
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my_job

input.txt

output.txt

//Create DAX object
dax = ADAG("test_dax")
//Define my job
myJob = Job(name="my_job")
//Input and output files to my job
inputFile = File("input.txt")
outputFile = File("output.txt")
//Arguments to my_job (./my_job input=input.txt 

output=output.txt)
myJob.addArgument("input=input.txt", 

"output=output.txt")
//Role of the files for the job
myJob.uses(inputFile, link=Link.INPUT)
myJob.uses(outputFile, link=Link.OUTPUT)
//Add the job to the workflow
dax.addJob(myJob)
//Write to file
fp = open("test.dax", "w")
dax.writeXML(fp)
fp.close()



Planning
• DAX is “abstract workflow”

– Logical filenames and executables
– Algorithm description

• Prepare workflow to execute on a certain system
• Use Pegasus to “plan” workflow

– Uses catalogs to resolve logical names, compute info
– Pegasus automatically augments workflow

• Staging jobs (if needed) with GridFTP or Globus Online
• Registers output files in a catalog to find later
• Wraps jobs in pegasus-kickstart for detailed statistics

– Generates a DAG
• Top-level workflow description (tasks and dependencies)
• Submission file for each job (HTCondor format)
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Pegasus Workflow Path
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Other tools in stack

• HTCondor (UW Madison)
– Pegasus ‘submits’ workflow to HTCondor
– Supervises runtime execution of DAG files

• Maintains queue
• Monitors dependencies
• Schedules jobs
• Retries failures
• Writes checkpoint

• GRAM (Globus Toolkit)
– Uses certificate-based authentication for remote job 

submission
– Supported by many HPC resources
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Pegasus/HTCondor/GRAM stack
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Other Workflow Tools

• Regardless of the tool, trying to solve same problems
– Describe your workflow (Pegasus “Create”)
– Prepare your workflow for the execution environment 

(Pegasus “Plan”)
– Send jobs to resources (HTCondor, GRAM)
– Monitor the execution of the jobs (HTCondor DAGMan)

• Brief overview of some other available tools
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Other Workflow Tools: Swift
• Similar, but workflow defined via scripting language
• Developed at the University of Chicago

17

//Create new type
type messagefile;
//Create app definition, returns messagefile
app (messagefile t) greeting() {

//Print and pipe stdout to t
echo “Hello, world!” stdout=@filename(t);

}
//Create a new messagefile, linked to hello.txt
messagefile outfile <“hello.txt”>
//Run greeting() and store results
outfile = greeting();

• Workflow compiled internally and executed
• Focus on large data, many tasks



Other Workflow Tools: Askalon
• Developed at

University of Innsbruck
• Similar approach

to Pegasus/HTCondor
– Create workflow description

• Either program in workflow language
• Or use UML editor to graphically create

– Conversion: like planning, to bind to specific execution
– Submit jobs to Enactment Engine, which distributes jobs 

for execution at remote grid or cloud sites
– Provides monitoring tools
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Other Workflow Tools

• Kepler (diverse US collaboration)
– GUI interface
– Many models of computation (‘actors’)
– Many built-in components (tasks) already

• WS-PGRADE/gUSE (Hungarian Academy of Sciences)
– WS-PGRADE is GUI interface to gUSE services
– Supports “templates”, like OOP inheritance, for parameter sweeps
– Interfaces with many architectures

• UNICORE (Jülich Supercomputing Center)
– GUI interface to describe workflow
– Branches, loops, parallel loops

• Many more: ask me about specific use cases
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Workflow Application:  CyberShake
• What will peak ground motion be over the next 50 years?

– Used in building codes, insurance, government, planning
– Answered via Probabilistic Seismic Hazard Analysis (PSHA)
– Communicated with hazard curves and maps

Hazard curve for downtown LA

2% in 50 years

0.6 g

Probability of exceeding 0.1g in 50 yrs



CyberShake Computational Requirements

• Determine shaking due to ~500,000 earthquakes per 
site of interest

• Large parallel jobs
– 2 GPU wave propagation jobs, 800 nodes x 1 hour
– Total of 1.5 TB output

• Small serial jobs
– 500,000 seismogram calculation jobs, 1 core x 4.7 minutes
– Total of 30 GB output

• Need ~300 sites for hazard map
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Why Scientific Workflows?
• Large-scale, heterogeneous, high throughput

– Parallel and many serial tasks
– Task duration 100 ms – 1 hour

• Automation
• Data management
• Error recovery
• Resource provisioning
• Scalable
• System-independent description



Challenge:  Resource Provisioning

• For large parallel jobs, submit to remote scheduler
– GRAM puts jobs in remote queue
– Runs like a normal batch job
– Can specify either CPU or GPU nodes

• For small serial jobs, need high throughput
– Putting lots of jobs in the batch queue is ill-advised

• Scheduler isn’t designed for heavy job load
• Scheduler cycle is ~5 minutes
• Policy limits too

• Solution: Pegasus-mpi-cluster (PMC)
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Pegasus-mpi-cluster
• MPI wrapper around serial or thread-parallel jobs

– Master-worker paradigm
– Preserves dependencies
– HTCondor submits job to multiple nodes, starts PMC
– Specify jobs as usual, Pegasus does wrapping

• Uses intelligent scheduling
– Core counts
– Memory requirements
– Priorities

• Can combine writes
– Workers write to master, master aggregates to fewer files
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Challenge:  Data Management
• Millions of data files

– Pegasus provides staging
• Symlinks files if possible, transfers files if needed
• Supports running parts of workflows on separate machines

– Transfers output back to local archival disk
– Pegasus registers data products in catalog
– Cleans up temporary files when no longer needed

• Directory hierarchy to reduce files per directory
• Added automated checks to check integrity

– Correct number of files, NaN, zero-value checks
– Included as new jobs in workflow



CyberShake Study 15.4

• Hazard curves for 336 sites
• Used OLCF Titan and NCSA Blue Waters

– Pegasus transferred 408 TB of intermediate data 

• Averaged 1962 nodes (CPUs and GPUs) for 35 days
– Max of 20% of Blue Waters, 80% of Titan
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• Generated 170 million seismograms
– 4372 jobs in queues

• On average, 10 site workflows 
running concurrently

• Managed 1.1 PB of data
– 7.7 TB staged back to local disk (~7M files)

• Workflow tools scale!



Problems Workflows Solve

• Task executions
– Workflow tools will retry and checkpoint if needed

• Data management
– Stage-in and stage-out data
– Ensure data is available for jobs automatically

• Task scheduling
– Optimal execution on available resources

• Metadata
– Automatically track runtime, environment, arguments, inputs

• Getting cores
– Whether large parallel jobs or high throughput
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Should you use workflow tools?
• Probably using a workflow already

– Replaces manual hand-offs and polling to monitor
• Provides framework to assemble community codes
• Scales from local computer to large clusters
• Provide portable algorithm description independent 

of data
• Does add additional software layers and complexity

– Some development time is required
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Final Thoughts

• Automation is vital
– Eliminate human polling
– Get everything to run automatically if successful
– Be able to recover from common errors

• Put ALL processing steps in the workflow
– Include validation, visualization, publishing, notifications

• Avoid premature optimization
• Consider new compute environments (dream big!)

– Larger clusters, XSEDE/PRACE/RIKEN/CC, Amazon EC2
• Tool developers want to help you!
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Links
• SCEC:  http://www.scec.org
• Pegasus:  http://pegasus.isi.edu
• Pegasus-mpi-cluster:  http://pegasus.isi.edu/wms/docs/latest/cli-

pegasus-mpi-cluster.php
• HTCondor: http://www.cs.wisc.edu/htcondor/
• Globus:  http://www.globus.org/
• Swift:  http://swift-lang.org
• Askalon:  http://www.dps.uibk.ac.at/projects/askalon/
• Kepler: https://kepler-project.org/
• WS-PGRADE:  https://guse.sztaki.hu/liferay-portal-6.0.5/
• UNICORE:  http://www.unicore.eu/
• CyberShake: http://scec.usc.edu/scecpedia/CyberShake
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Questions?
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