New Directions in Computational Earthquake Physics
Eric M. Dunham, Stanford University

Extending SCEC's expertise in computational science from large-scale
scenario earthquake simulations to more sophisticated earthquake physics

e Small-scale fault-zone physics

(in large-scale simulations) | ;?ip\agt@n
. . . < . L rection
* Multicycle dynamics (self-consistent v/~ ~  actively slipping

initial conditions; role of slow slip)
» High frequency ground motion
(geometrical complexities)

velocity seismogram
CHGNEOms

VE‘:}B

10
slip fault friction \A

0 w
off-fault plastic strain
9% 0 50 100




Source Processes Causing Incoherent High Frequency Ground Motion:

1 Fault Roughness and Geometric Complexity
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Model features naturally arising variations in slip and rupture velocity

ot (spatially uniform initial stresses and friction law parameters)

[Dunham et al., 2010]
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Frequency-Dependent Radiation Pattern and Directivity Effects

(In Far-Field Body Waves)
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Caused by variations in local radiation pattern from nonplanarity
(can never be captured with standard method of heterogeneous stresses on planar faults)

[Cho and Dunham, work in progress, 2010]



Numerical Method: Simultaneous Solution of Elastodynamics and Friction Law

* SBP+SAT finite differences
 Provably stable and high-order accurate

 Block-structured curvilinear meshes
» Artificial dissipation to control oscillations
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Multicycle Dynamics

* Inertial dynamics as well as quasi-static loading (rate-and-state friction)
* Self-consistent initial conditions for single event simulations
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* Current methodologies limited to simplest geometries, linear elasticity

» Computational challenge: quasi-static elasticity (equations are elliptic, not hyperbolic)
requires scalable parallel iterative solvers for volume-discretized (FD, FE, FV) codes




Physics-Based Description of Fault-Zone Processes

Fault strength governed by small-scale processes, many of which have only recently
been introduced into dynamic rupture models (usually in idealized 2D geometries)
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Numerical Methodology: :
couple elastodynamics with ~ ___----""]
transport of heat and pore fluids
within fault zone
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Earthquake Simulations with Dynamic Weakening

Only ~30 m propagation distance (magnitude 1-2, mapping 2D
simulations to 3D) but no compromises in lab-based parameters
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Computational Challenges

Numerical methods: Multiphysics (diffusion + wave propagation)

Imagine: Each fault grid point
now has associated fault-zone
grid with ~102—103 points

[Olsen et al., 2006]



Resolution, Resolution, Resolution

Current state-of-the-art with marginally
resolved rupture fronts on uniform grids

Fault Dimension ~300 km (3D)
~30m (2D) ~30 km (2D) ~30 km (3D)
lab-based physics artificially increased D.
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5 orders of magnitude difference!!!

Alternative approaches:
* Parameterization of unmodeled small-scale processes
» Adaptive Mesh Refinement (AMR) to resolve rupture front and wavefronts



Adaptive Mesh Refinement

resolve sharp wavefronts and nearly singular

: stress concentration
stress/velocity fields around rupture front
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2D domain (200 km by 200 km), smallest Ax ~ 5 m:
* uniform mesh: 32,768 grid points in each direction
* adaptive mesh: few hours on 8-core Mac Pro (factor of 256 refinement)
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[Kozdon and Dunham, work in progress, 2010]



High frequency ground motion
* Five causes:

* Site/Path: (1) site effects, (2) scattering off material heterogeneities
* Source: variations in (3) slip, (4) rupture velocity, (5) local radiation pattern

« Computational tasks: Select code (options: SORD, FEM, FDM with mapping)

* Our FD code scales to 4096 cores (most tested), but needs optimization
» Add roughness waves to scale of slip in 2D
« Extend to 3D

Multicycle simulations (quasi-static loading, dynamic ruptures)
 Currently only in BIEM codes (flat faults in uniform whole-spaces)

 Extension to general geometries and material response with FEM/FDM/FVM
» Computational tasks:

* Optimize BIEM codes (parallel FFT)
* Scalable parallel iterative solver for volume-discretized methods

Dynamic weakening mechanisms and detailed fault-zone models
» Thermal pressurization, velocity-weakening friction, off-fault plasticity
» Computational tasks:

 Load balancing or enlisting off-fault processes to help update fault physics
* AMR to resolve nearly singular fields at rupture front



