Difference between revisions of "Broadband File Format Guide"

From SCECpedia
Jump to navigationJump to search
 
(7 intermediate revisions by 2 users not shown)
Line 34: Line 34:
 
In the SRC file, lines starting with '#' are considered comments and are ignored by the Platform. The first few parameters are used to specify the event magnitude and describe the rupture. FAULT_LENGTH is used to specify the extent of the fault plane in the along strike direction, while FAULT_WIDTH specifies the dimension of the fault plane in the down dip direction. DEPTH_TO_TOP specifies how deep the fault plane is located (zero means a surface rupture). LAT_TOP_CENTER and LON_TOP_CENTER specify the location of the top center point of the fault plane. HYPO_ALONG_STK and HYPO_DOWN_DIP specify the hypocenter location within the fault plane, with the (0, 0) coordinate being the TOP_CENTER of the fault plane. Therefore, HYPO_ALONG_STK goes from -(FAULT_LENGTH / 2) to (FAULT_LENGTH / 2), with zero being the mid-point of the fault plane. HYPO_DOWN_DIP starts at zero (top of the plane) and goes down to FAULT_WIDTH. All distances should be provided in kilometers (km). STRIKE, RAKE, and DIP are used to describe the fault mechanism and should be provided in degrees.
 
In the SRC file, lines starting with '#' are considered comments and are ignored by the Platform. The first few parameters are used to specify the event magnitude and describe the rupture. FAULT_LENGTH is used to specify the extent of the fault plane in the along strike direction, while FAULT_WIDTH specifies the dimension of the fault plane in the down dip direction. DEPTH_TO_TOP specifies how deep the fault plane is located (zero means a surface rupture). LAT_TOP_CENTER and LON_TOP_CENTER specify the location of the top center point of the fault plane. HYPO_ALONG_STK and HYPO_DOWN_DIP specify the hypocenter location within the fault plane, with the (0, 0) coordinate being the TOP_CENTER of the fault plane. Therefore, HYPO_ALONG_STK goes from -(FAULT_LENGTH / 2) to (FAULT_LENGTH / 2), with zero being the mid-point of the fault plane. HYPO_DOWN_DIP starts at zero (top of the plane) and goes down to FAULT_WIDTH. All distances should be provided in kilometers (km). STRIKE, RAKE, and DIP are used to describe the fault mechanism and should be provided in degrees.
  
In the second part of the file, where model-specific parameters are located, DWID and DLEN are used to provide the step interval (again, in kilometers) for the rupture creation. Smaller values will result in increased computation time. The CORNER_FREQ parameter is only used by the UCSB method. Finally, the SEED parameter enables randomization in the code (e.g. it allows different slip distributions to be generated). By using the same SEED parameter, users can generate reproducible results in the Broadband Platform.
+
In the second part of the file, where model-specific parameters are located, DWID and DLEN are used to provide the step interval (again, in kilometers) for the rupture creation. Smaller values will result in increased computation time. The SEED parameter enables randomization in the code (e.g. it allows different slip distributions to be generated). By using the same SEED parameter, users can generate reproducible results in the Broadband Platform.
 +
 
 +
Finally, the CORNER_FREQ parameter is only used by the UCSB method. This parameters specifies the frequency at which the Fourier Amplitude Spectrum (FAS) of the moment rate spectrum decays at a rate of ~ -2 from the flat part of the spectrum, in log log domain. There is a relationship between the corner frequency and the average stress drop, e.g. (Brune 1970 and 1971). For specific regions, the stress drop is a parameter and can be measured from regional seismicity. In practice, look at the regional seismicity, calculate stress drops. From these calculations one can choose the appropriate stress drop and compute the corner frequency from the actual moment, rupture area and chosen stress drop.
  
 
==== Station List (STL) file ====
 
==== Station List (STL) file ====
Line 134: Line 136:
 
===== LA Basin =====
 
===== LA Basin =====
  
<div style="min-height: 500px;">
+
<div style="min-height: 460px;">
 
[[File:La basin.png|thumb|upright=2.0|baseline|Velocity Profile for LA Basin]]
 
[[File:La basin.png|thumb|upright=2.0|baseline|Velocity Profile for LA Basin]]
 
<pre>
 
<pre>
Line 161: Line 163:
 
===== Mojave =====
 
===== Mojave =====
  
 +
<div style="min-height: 460px;">
 
[[File:Mojave.png|thumb|upright=2.0|baseline|Velocity Profile for the Mojave Region]]
 
[[File:Mojave.png|thumb|upright=2.0|baseline|Velocity Profile for the Mojave Region]]
 
<pre>
 
<pre>
Line 183: Line 186:
 
   999.0000    7.8000    4.5000    3.2000    450.00    225.00
 
   999.0000    7.8000    4.5000    3.2000    450.00    225.00
 
</pre>
 
</pre>
 +
</div>
  
 
===== Northern California =====
 
===== Northern California =====
  
 +
<div style="min-height: 460px;">
 +
[[File:Nocal.png|thumb|upright=2.0|baseline|Velocity Profile for Northern California]]
 
<pre>
 
<pre>
 
18
 
18
Line 207: Line 213:
 
999.0000  7.8000  4.4000  3.3000  440.00  220.00
 
999.0000  7.8000  4.4000  3.3000  440.00  220.00
 
</pre>
 
</pre>
 +
</div>
  
 
===== Eastern United States =====
 
===== Eastern United States =====
  
 +
<div style="min-height: 460px;">
 +
[[File:Ceus 1k.png|thumb|upright=2.0|baseline|Velocity Profile for the Eastern United States]]
 
<pre>
 
<pre>
 
23
 
23
Line 236: Line 245:
 
   999.0000    8.4300    4.8700    3.5193    2900.00    2900.00
 
   999.0000    8.4300    4.8700    3.5193    2900.00    2900.00
 
</pre>
 
</pre>
 +
</div>
  
 
===== Eastern Canada =====
 
===== Eastern Canada =====
  
 +
<div style="min-height: 460px;">
 +
[[File:Canada 1k.png|thumb|upright=2.0|baseline|Velocity Profile for Eastern Canada]]
 
<pre>
 
<pre>
 
24
 
24
Line 266: Line 278:
 
   999.0000    8.4300    4.8700    3.5193    2900.00    2900.00
 
   999.0000    8.4300    4.8700    3.5193    2900.00    2900.00
 
</pre>
 
</pre>
 +
</div>
  
 
===== Central Japan =====
 
===== Central Japan =====
  
 +
<div style="min-height: 460px;">
 +
[[File:Central japan.png|thumb|upright=2.0|baseline|Velocity Profile for Central Japan]]
 
<pre>
 
<pre>
 
14
 
14
Line 286: Line 301:
 
   999.0000    7.8000    4.5000    3.3000    450.00    225.00
 
   999.0000    7.8000    4.5000    3.3000    450.00    225.00
 
</pre>
 
</pre>
 +
</div>
  
 
===== Western Japan =====
 
===== Western Japan =====
  
 +
<div style="min-height: 460px;">
 +
[[File:Western japan.png|thumb|upright=2.0|baseline|Velocity Profile for Western Japan]]
 
<pre>
 
<pre>
 
14
 
14
Line 306: Line 324:
 
   999.0000    7.8000    4.5000    3.3000    450.00    225.00
 
   999.0000    7.8000    4.5000    3.3000    450.00    225.00
 
</pre>
 
</pre>
 +
</div>
  
 
==== Broadband Platform Workflow Description (XML) File ====
 
==== Broadband Platform Workflow Description (XML) File ====

Latest revision as of 15:45, 23 June 2015

This page describes the format for the files used in Broadband Platform Simulations. The simple source description (SRC) and the station list (STL) files are inputs to Broadband Platform simulations, and must be provided for every run. The velocity model file is part of a velocity model configuration package and is also an input to the platform. A single velocity model file can be shared among several simulations using the same region. Time history (BBP) files are produced by the Platform for each station included in the station list. The Broadband Platform workflow description (XML) file is an intermediate product of the Broadband Platform. It is produced automatically by the Platform, but can also be provided by the user in cases where script automation is used to replace the interactive prompts of the Platform.

SImple Source Description (SRC) file

Below is a sample SRC file, used to describe the 1989 Loma Prieta earthquake in Northern California:

#
# Loma Prieta source file
#
MAGNITUDE = 6.94
FAULT_LENGTH = 40.0
FAULT_WIDTH = 17.5
DEPTH_TO_TOP = 3.85
STRIKE = 128
RAKE = 145
DIP = 70
LAT_TOP_CENTER = 37.0789
LON_TOP_CENTER = -121.8410
HYPO_ALONG_STK = 0.0
HYPO_DOWN_DIP =  14.75
#
# Model specific parameters
#
DWID = 0.1
DLEN = 0.1
CORNER_FREQ = 0.15
#
# Alternative SEEDS create alternative .srf
#
SEED = 2379646

In the SRC file, lines starting with '#' are considered comments and are ignored by the Platform. The first few parameters are used to specify the event magnitude and describe the rupture. FAULT_LENGTH is used to specify the extent of the fault plane in the along strike direction, while FAULT_WIDTH specifies the dimension of the fault plane in the down dip direction. DEPTH_TO_TOP specifies how deep the fault plane is located (zero means a surface rupture). LAT_TOP_CENTER and LON_TOP_CENTER specify the location of the top center point of the fault plane. HYPO_ALONG_STK and HYPO_DOWN_DIP specify the hypocenter location within the fault plane, with the (0, 0) coordinate being the TOP_CENTER of the fault plane. Therefore, HYPO_ALONG_STK goes from -(FAULT_LENGTH / 2) to (FAULT_LENGTH / 2), with zero being the mid-point of the fault plane. HYPO_DOWN_DIP starts at zero (top of the plane) and goes down to FAULT_WIDTH. All distances should be provided in kilometers (km). STRIKE, RAKE, and DIP are used to describe the fault mechanism and should be provided in degrees.

In the second part of the file, where model-specific parameters are located, DWID and DLEN are used to provide the step interval (again, in kilometers) for the rupture creation. Smaller values will result in increased computation time. The SEED parameter enables randomization in the code (e.g. it allows different slip distributions to be generated). By using the same SEED parameter, users can generate reproducible results in the Broadband Platform.

Finally, the CORNER_FREQ parameter is only used by the UCSB method. This parameters specifies the frequency at which the Fourier Amplitude Spectrum (FAS) of the moment rate spectrum decays at a rate of ~ -2 from the flat part of the spectrum, in log log domain. There is a relationship between the corner frequency and the average stress drop, e.g. (Brune 1970 and 1971). For specific regions, the stress drop is a parameter and can be measured from regional seismicity. In practice, look at the regional seismicity, calculate stress drops. From these calculations one can choose the appropriate stress drop and compute the corner frequency from the actual moment, rupture area and chosen stress drop.

Station List (STL) file

Below is a sample STL file, with the stations used in the 1989 Loma Prieta earthquake:

#BBP Station List for Loma Prieta
#SLong    SLat     RSN   Vs30(m/s) LoPass_Freq(Hz) HiPass_Freq(Hz)
-121.803 37.050  8001-CLS  462 0.1866  111.1111
-122.010 37.172  8002-LGP  515 0.3012  111.1111
-121.991 37.202  8003-LEX  1070 0.0984  111.1111
-122.031 37.255  8004-STG  387 0.1422  111.1111
-122.009 37.262  8005-WVC  387 0.1263  111.1111
-121.572 36.973  8006-G01  1428 0.2584  111.1111
-121.568 36.973  8007-GIL  730 0.2732  111.1111
-121.984 37.047  8008-BRN  353 0.2611  111.1111
-121.569 37.009  8009-GOF  387 0.2268  111.1111
-121.536 36.987  8010-G03  350 0.1248  111.1111
-121.803 37.210  8011-SJTE 672 0.1085  111.1111
-121.995 36.972  8012-WAH  390 0.2174  111.1111
-121.484 37.026  8020-G06  663 0.3012  111.1111
-122.060 37.001  8016-LOB  714 0.2058  111.1111
-122.062 37.001  8014-UC2  714 0.4348  111.1111
-121.628 37.166  8021-ADL  489 0.1767  111.1111
-121.628 37.166  8022-AND  489 0.2674  111.1111
-121.550 37.118  8026-CYC  540 0.1639  111.1111
-121.434 37.033  8015-GMR  334 0.3077  111.1111
-121.397 36.848  8013-HSP  306 0.1439  111.1111
-121.446 36.765  8025-SGI  748 0.1263  111.1111
-122.210 37.420  8017-SLC  425 0.3077  111.1111
-121.642 36.671  8024-SJW  353 0.1277  111.1111
-122.258 37.429  8019-WDS  454 0.1222  111.1111
-121.395 36.753  8018-SG3  609 0.1263  111.1111
-121.807 37.452  8023-CLR  540 0.1453  111.1111
-122.308 37.512  8040-BES  628 0.2151  111.1111
-121.880 37.597  8032-SUF  401 0.1236  111.1111
-122.361 37.529  8028-XSP  782 0.3012  111.1111
-121.249 36.658  8036-BVW  331 0.1133  111.1111
-122.061 37.657  8030-A3E  517 0.3040  111.1111
-121.932 37.709  8037-DFS  353 0.1038  111.1111
-121.184 36.573  8027-BVF  353 0.3390  111.1111
-121.143 36.532  8038-BVR  304 0.1639  111.1111
-121.043 36.569  8033-BVU  390 0.2500  111.1111
-122.391 37.786  8029-RIN  873 0.2976  111.1111
-122.513 37.778  8031-CFH  782 0.2398  111.1111
-122.249 37.876  8034-BRK  609 0.2398  111.1111
-122.476 37.808  8035-GGB  653 0.2421  111.1111
-122.527 37.822  8039-PTB  1316 0.2941  111.1111

Each line in the station list (STL) file contains information about one station used in the simulation. Lines starting with '#' are comments and are ignored by the Broadband Platform. Each line should contain at least 3 parameters, but can also optionally include a total of 4 or 6 parameters. The first 3 parameters (required) are longitude, latitude, and station name. Latitude and longitude should be provided in decimal degrees (if converting from degrees, minutes, and seconds, the latitude of 37 degrees, 30 minutes, and 0 seconds should be specified as 37.5). The station name is an identifier for the station and should contain between 3 and 10 characters. These 3 parameters form the minimum set required for each of the stations. Optionally, a station can include a 4th parameter, the Vs30 (specified in meters per second) for the particular location where the station is located. Also optionally, each station can include 2 more parameters that specify the frequency range (in Hertz) where recordings for a specific station are valid. These 2 values, used only when the platform runs in validation mode, are used to filter untrusted data out of the Goodness of Fit (GoF) plots. Please note that it is not possible to include the frequency ranges without including the Vs30 parameter. If the frequency range is not specified, the Broadband Platform will use the entire 0.1Hz to 100Hz range for the GoF plots.

Time History (BBP) file

Below is a sample time series (BBP) file, produced by the Broadband Platform:

% --------------------------------------------------
% synthetic broadband seismogram (Mai&Olsen 2008)   
% N = 8 header lines
% site:  5017-A-GLP
% NPTS, DT:  10922 0.009372998029
%
% time(s)    NS (cm/s)      EW(cm/s)       UP (cm/s)
% --------------------------------------------------
  0.00000    0.00000E+00    0.00000E+00    0.00000E+00
  0.00937    0.00000E+00    0.00000E+00    0.00000E+00
  0.01875    0.00000E+00    0.00000E+00    0.00000E+00
  0.02812    0.00000E+00    0.00000E+00    0.00000E+00
  0.03749    0.00000E+00    0.00000E+00    0.00000E+00
…
  4.82709    0.13824E-01   -0.44237E-02   -0.41983E-02
  4.83647    0.64276E-01   -0.24146E-01   -0.31487E-01
  4.84584    0.10083E+00   -0.45090E-01   -0.74688E-01
  4.85521    0.93571E-01   -0.50971E-01   -0.10271E+00
  4.86459    0.74907E-01   -0.51622E-01   -0.12331E+00
  4.87396    0.55531E-01   -0.51775E-01   -0.14432E+00
…
102.32502    0.11583E+00    0.26702E-01    0.93545E-01
102.33439    0.11322E+00    0.26290E-01    0.92550E-01
102.34377    0.11017E+00    0.25777E-01    0.91201E-01
102.35314    0.10671E+00    0.25165E-01    0.89504E-01
102.36251    0.10283E+00    0.24455E-01    0.87463E-01

In the BBP file, lines beginning with a '%' or '#' are considered comments and should be ignored. The comment section at the top of the file contains useful information about the BBP file. For example, it includes the station name corresponding to the data, as well as the number of points in the file and the DT used in the simulation.

The rest of the file is organized in 4 columns containing the actual time series data. As indicated in the file's header, the first column corresponds to the timestamp (in seconds), and the last 3 columns correspond to the 3 components - 2 horizontals (north/south and east/west), and 1 vertical (up/down). For a velocity time history, the units indicated at the top of the file will be cm/s and for an acceleration time history, they will be cm/s/s. Each line in the file corresponds to a data point, spaced DT seconds apart from the next point.

Velocity Model File

In the Broadband Platform, 1D velocity model files are part of a velocity model package in the Platform, and are generally tied to a region. All Broadband Platform simulations using that specific region will share the same velocity model file.

In the velocity model file, the first line indicates how many layers compose the velocity model. The following lines, one for each layer, describes the layer in details. The first column is the thickness of the layer (in kilometers). The second and third columns are Vp and Vs, respectively, both in km/s. The forth column contains the rho value (in g/cm3), while the last two columns contain the Qp and Qs parameters respectively.

Currently available 1D velocity models are:

LA Basin
Velocity Profile for LA Basin
18
  0.0020   1.7000   0.4500   2.0000    45.00    22.50
  0.0040   1.8000   0.6500   2.1000    65.00    32.50
  0.0060   1.8000   0.8500   2.1000    85.00    42.50
  0.0080   1.9000   0.9500   2.1000    95.00    47.50
  0.0100   2.0000   1.1500   2.2000   115.00    57.50
  0.0700   2.4000   1.2000   2.2000   120.00    60.00
  0.2000   2.8000   1.4000   2.3000   140.00    70.00
  0.2000   3.1000   1.6000   2.4000   160.00    80.00
  0.2000   3.4000   1.8000   2.4500   180.00    90.00
  0.3000   3.7000   2.1000   2.5000   210.00   105.00
  2.0000   4.4000   2.4000   2.6000   240.00   120.00
  2.0000   5.1000   2.8000   2.7000   280.00   140.00
  1.0000   5.6000   3.1500   2.7500   315.00   157.50
  5.0000   6.1500   3.6000   2.8250   360.00   180.00
  5.0000   6.3200   3.6500   2.8500   365.00   182.50
  5.0000   6.5500   3.7000   2.9000   370.00   185.00
 10.0000   6.8000   3.8000   2.9500   380.00   190.00
999.0000   7.8000   4.5000   3.2000   450.00   225.00
Mojave
Velocity Profile for the Mojave Region
18
     0.0020     1.7000     0.4500     2.0000      45.00      22.50
     0.0040     1.8000     0.6500     2.1000      65.00      32.50
     0.0060     1.8000     0.8500     2.1000      85.00      42.50
     0.0080     1.9000     0.9500     2.1000      95.00      47.50
     0.0100     2.0000     1.1500     2.2000     115.00      57.50
     0.0700     2.8000     1.4000     2.3000     140.00      70.00
     0.2000     3.4000     1.7000     2.4000     170.00      85.00
     0.2000     3.9000     2.0000     2.5000     200.00     100.00
     0.2000     4.3000     2.3000     2.6000     230.00     115.00
     0.3000     4.4000     2.5000     2.6500     250.00     125.00
     2.0000     5.1000     2.8000     2.7000     280.00     140.00
     2.0000     6.0000     3.3000     2.7500     330.00     165.00
     1.0000     6.1000     3.4500     2.8000     345.00     172.50
     5.0000     6.1500     3.6000     2.8250     360.00     180.00
     5.0000     6.3200     3.6500     2.8500     365.00     182.50
     5.0000     6.5500     3.7000     2.9000     370.00     185.00
    10.0000     6.8000     3.8000     2.9500     380.00     190.00
   999.0000     7.8000     4.5000     3.2000     450.00     225.00
Northern California
Velocity Profile for Northern California
18
  0.0020   1.7000   0.4500   2.0000    45.00    22.50
  0.0040   1.8000   0.6500   2.1000    65.00    32.50
  0.0060   1.8000   0.8500   2.1000    85.00    42.50
  0.0080   1.9000   0.9500   2.1000    95.00    47.50
  0.0100   2.0000   1.1500   2.2000   115.00    57.50
  0.0700   2.4000   1.2000   2.2000   120.00    60.00
  0.1000   2.6000   1.3000   2.4000   130.00    65.00
  0.3000   3.0000   1.4000   2.4500   140.00    70.00
  0.5000   3.6000   1.9500   2.5500   195.00    97.50
  0.5000   4.4000   2.5000   2.6000   250.00   125.00
  1.0000   4.8000   2.8000   2.6000   280.00   140.00
  1.0000   5.2500   3.1000   2.6200   310.00   155.00
  1.5000   5.5000   3.2500   2.6500   325.00   162.50
  2.0000   5.6000   3.3500   2.7000   335.00   167.50
  2.0000   5.7500   3.4500   2.7200   345.00   172.50
  8.0000   6.1000   3.6000   2.7500   360.00   180.00
  8.0000   6.5000   3.8000   3.0000   380.00   190.00
999.0000   7.8000   4.4000   3.3000   440.00   220.00
Eastern United States
Velocity Profile for the Eastern United States
23
     0.0307     1.7300     1.0000     2.0306      10.00      10.00
     0.0140     2.6832     1.5510     2.1408      35.51      35.51
     0.0553     3.1192     1.8030     2.2766      38.03      38.03
     1.8330     5.1900     3.0000     2.6111     500.00     500.00
     0.8950     5.5770     3.2240     2.6650     500.00     500.00
     2.1720     5.8280     3.3690     2.7000    1500.00    1500.00
     2.1500     6.1760     3.5700     2.7568    2900.00    2900.00
     7.5000     6.1800     3.5700     2.7248    2900.00    2900.00
    11.0000     6.3600     3.6800     2.7811    2900.00    2900.00
     8.0000     7.1200     4.1200     3.0660    2900.00    2900.00
     1.0000     7.1500     4.1300     3.0520    2900.00    2900.00
     1.2000     7.2600     4.2000     3.0943    2900.00    2900.00
     0.8500     7.6400     4.4200     3.2331    2900.00    2900.00
     0.2000     7.9700     4.6100     3.3533    2900.00    2900.00
    10.0000     8.1200     4.6900     3.4059    2900.00    2900.00
    10.0000     8.3500     4.7000     3.4489    2900.00    2900.00
    10.0000     8.4000     4.7600     3.4775    2900.00    2900.00
    10.0000     8.4100     4.7800     3.4859    2900.00    2900.00
    10.0000     8.4200     4.7900     3.4909    2900.00    2900.00
    10.0000     8.4200     4.8100     3.4976    2900.00    2900.00
    10.0000     8.4200     4.8300     3.5043    2900.00    2900.00
    10.0000     8.4200     4.8500     3.5109    2900.00    2900.00
   999.0000     8.4300     4.8700     3.5193    2900.00    2900.00
Eastern Canada
Velocity Profile for Eastern Canada
24
     0.0307     1.7300     1.0000     2.0306      10.00      10.00
     0.0140     2.6832     1.5510     2.1408      35.51      35.51
     0.0553     3.1192     1.8030     2.2766      38.03      38.03
     1.8330     5.1900     3.0000     2.6111     500.00     500.00
     0.8950     5.5770     3.2240     2.6650     500.00     500.00
     2.1720     5.8280     3.3690     2.7000    1500.00    1500.00
     1.5000     6.1760     3.5700     2.7568    2900.00    2900.00
     7.9000     6.5000     3.7600     2.8512    2900.00    2900.00
     7.6000     6.6500     3.8400     2.8901    2900.00    2900.00
     7.8000     6.9700     4.0300     3.0057    2900.00    2900.00
     8.2500     7.1200     4.1200     3.0644    2900.00    2900.00
     1.0000     7.1500     4.1300     3.0520    2900.00    2900.00
     1.2000     7.2600     4.2000     3.0943    2900.00    2900.00
     0.8500     7.6400     4.4200     3.2331    2900.00    2900.00
     0.2000     7.9700     4.6100     3.3533    2900.00    2900.00
    10.0000     8.1200     4.6900     3.4059    2900.00    2900.00
    10.0000     8.3500     4.7000     3.4489    2900.00    2900.00
    10.0000     8.4000     4.7600     3.4775    2900.00    2900.00
    10.0000     8.4100     4.7800     3.4859    2900.00    2900.00
    10.0000     8.4200     4.7900     3.4909    2900.00    2900.00
    10.0000     8.4200     4.8100     3.4976    2900.00    2900.00
    10.0000     8.4200     4.8300     3.5043    2900.00    2900.00
    10.0000     8.4200     4.8500     3.5109    2900.00    2900.00
   999.0000     8.4300     4.8700     3.5193    2900.00    2900.00
Central Japan
Velocity Profile for Central Japan
14
     0.0020     1.7000     0.4500     2.0000      45.00      22.50
     0.0040     1.8000     0.6500     2.1000      65.00      32.50
     0.0060     1.8000     0.8500     2.1000      85.00      42.50
     0.0080     1.9000     0.9500     2.1000      95.00      47.50
     0.0100     2.0000     1.1500     2.2000     115.00      57.50
     0.0700     2.4000     1.2000     2.2000     120.00      60.00
     0.1000     2.6000     1.3000     2.4000     130.00      65.00
     0.1600     3.0000     1.4000     2.4500     140.00      70.00
     0.1000     3.6000     2.0000     2.5500     200.00     100.00
     0.4400     4.2000     2.4000     2.6000     240.00     120.00
     5.9000     5.5000     3.2000     2.6500     320.00     160.00
    10.2000     6.1000     3.4000     2.7500     340.00     170.00
    14.6300     6.5000     3.8000     3.0000     380.00     190.00
   999.0000     7.8000     4.5000     3.3000     450.00     225.00
Western Japan
Velocity Profile for Western Japan
14
     0.0020     1.7000     0.4500     2.0000      45.00      22.50
     0.0040     1.8000     0.6500     2.1000      65.00      32.50
     0.0060     1.8000     0.8500     2.1000      85.00      42.50
     0.0080     1.9000     0.9500     2.1000      95.00      47.50
     0.0100     2.0000     1.1500     2.2000     115.00      57.50
     0.0200     2.4000     1.2000     2.2000     120.00      60.00
     0.0200     2.6000     1.3000     2.4000     130.00      65.00
     0.0200     3.0000     1.4000     2.4500     140.00      70.00
     0.0200     3.6000     2.0000     2.5500     200.00     100.00
     0.0200     4.2000     2.4000     2.6000     240.00     120.00
     6.6700     5.5000     3.2000     2.6500     320.00     160.00
    10.2000     6.1000     3.4000     2.7500     340.00     170.00
    14.6300     6.5000     3.8000     3.0000     380.00     190.00
   999.0000     7.8000     4.5000     3.3000     450.00     225.00

Broadband Platform Workflow Description (XML) File

The Broadband Platform uses a XML file to describe the workflow, or processing sequence, required to produce all simulation results. In the workflow description, the <BBP_Modules> section includes a list of all modules that need to run, in the required sequence, with the necessary parameters. For each module, the file contains a <BBP_Module> element, that names the module, includes the files needed to be copied to the indata directory before the module is executed, and the arguments needed for the module to produce the required results. File paths can be absolute paths, or can be referenced to one of Broadband's environmental variables. For example, "BBP_INSTALL_VAL" and "BBP_INSTALL_GF" will refer to the base directories where validation packages and velocity model packages are installed. A workflow description file is produced automatically by the Platform as the user walks through the interactive prompt. It is written to the xml directory before the simulation starts.

<BBP_Run_Specification>
	<Validation_Run event="WHITTIER" input_station_file="$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl" subset="false"/>
	<BBP_Modules>
		<BBP_Module>
			<name>
				Genslip
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_GF/LABasin/gp/genslip_nr_generic1d-gp01.vmod
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					genslip_nr_generic1d-gp01.vmod
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.srf
				</argument>
				<argument type="str">
					LABasin
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				Jbsim
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_GF/LABasin/gp/genslip_nr_generic1d-gp01.vmod
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					genslip_nr_generic1d-gp01.vmod
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.srf
				</argument>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					LABasin
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				BBToolbox
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_GF/LABasin/sdsu/sdsu-apr2013-labasin-vmod.txt
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					
				</argument>
				<argument type="str">
					sdsu-apr2013-labasin-vmod.txt
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.srf
				</argument>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					LABasin
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				CopySeismograms
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
			</arguments>
			<keyword_arguments>
				<keyword_argument keyword="hybrid" type="bool">
					True
				</keyword_argument>
			</keyword_arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				Plot_Map
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				PlotSeis
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="bool">
					True
				</argument>
				<argument type="bool">
					True
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				Respect
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				RotD50
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				ObsSeismograms
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/ucb/whittier_v13_3_1-corrections.txt
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					$BBP_INSTALL_VAL/Whittier/ucb/AccPEER3
				</argument>
				<argument type="str">
					acc_peer
				</argument>
				<argument type="str">
					whittier_v13_3_1-corrections.txt
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				GMPEComparison
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					WHITTIER
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="bool">
					True
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				GenPlots
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					$BBP_INSTALL_VAL/Whittier/ucb/AccPEER3
				</argument>
				<argument type="str">
					acc
				</argument>
				<argument type="str">
					WHITTIER
				</argument>
			</arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				GPGof
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/sdsu/whittier_v12_11_0_sdsu.src
				</file>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v12_11_0_sdsu.src
				</argument>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
				<argument type="str">
					$BBP_INSTALL_VAL/Whittier/ucb/AccPEER3
				</argument>
				<argument type="str">
					acc
				</argument>
				<argument type="float">
					5.89
				</argument>
				<argument type="str">
					WHITTIER
				</argument>
				<argument type="int">
					50
				</argument>
			</arguments>
			<keyword_arguments>
				<keyword_argument keyword="single_component" type="bool">
					False
				</keyword_argument>
			</keyword_arguments>
		</BBP_Module>
		<BBP_Module>
			<name>
				GenHTML
			</name>
			<staged_files>
				<file>
					$BBP_INSTALL_VAL/Whittier/gp/whittier_v13_3_1.stl
				</file>
			</staged_files>
			<arguments>
				<argument type="str">
					whittier_v13_3_1.stl
				</argument>
				<argument type="str">
					LABasin
				</argument>
				<argument type="str">
					WHITTIER
				</argument>
				<argument type="str">
					metadata.txt
				</argument>
			</arguments>
		</BBP_Module>
	</BBP_Modules>
</BBP_Run_Specification>