Difference between revisions of "La Habra Simulations on Titan"

From SCECpedia
Jump to navigationJump to search
Line 111: Line 111:
 
|}
 
|}
  
 +
== SRC Format La Habra Source ==
 +
*MAGNITUDE = 5.39
 +
*FAULT_LENGTH = 6.30
 +
*FAULT_WIDTH = 4.60
 +
*DEPTH_TO_TOP = 12.79
 +
*STRIKE = 296
 +
*RAKE = 146
 +
*DIP = 66
 +
*LAT_TOP_CENTER = 33.939
 +
*LON_TOP_CENTER = -117.771
 +
*HYPO_ALONG_STK = 0.0
 +
*HYPO_DOWN_DIP =  2.30
  
 
== References ==
 
== References ==

Revision as of 17:37, 18 June 2014

Overview

A series of simulations modelling the La Habra 5.1 event will be performed on ORNL Titan with in order to address these scientific and computational goals:

  • Demonstrate that Hercules-GPU software is in production status and evaluate its performance versus the CPU version
  • Evaluate goodness of fit for synthetic waveforms versus observed at 1.0 Hz, using Po Chen's updated CVM-S4 velocity model as the material properties source for the simulation.
  • [Optionally] Validate the simulation results generated by Hercules-GPU and AWP-GPU


Solver Parameters

Parameter Value Notes
Frequency 1.0 Hz
Simulation Length 100 s
Delta T 0.001 ?
Plane Output Resolution 250m ?
I/O Print Rate every 10 steps ?
Station List File:Lahabra titan stations.txt ?
Software Version Hercules-GPU i3


Simulation Box / Velocity Model

Parameter Value Notes
Dimensions (km) 180 x 135 x 61.875
Bounding Box (LL) ?
UCVM Version ? No heterogeneities
Velocity Model Version CVM-S4 v26 ?
Miniumum Vs 500 m/s ?
Samples per wavelength 8
Hercules Etree TBD


Source Parameters

Parameter Value Notes
Origin Time 2014/03/29 04:09:42.97 Source: En-Jui
Origin Location -117.930; 33.922; 5.0km Source: En-Jui
Strike/Dip/Rake 134/55/155 Source: En-Jui
Slip Function ? ?

SRC Format La Habra Source

  • MAGNITUDE = 5.39
  • FAULT_LENGTH = 6.30
  • FAULT_WIDTH = 4.60
  • DEPTH_TO_TOP = 12.79
  • STRIKE = 296
  • RAKE = 146
  • DIP = 66
  • LAT_TOP_CENTER = 33.939
  • LON_TOP_CENTER = -117.771
  • HYPO_ALONG_STK = 0.0
  • HYPO_DOWN_DIP = 2.30

References

  1. Bielak, J., H. Karaoglu, and R. Taborda, 2011. Memory-efficient displacement-based internal friction for wave propagation simulation, Geophysics, 76(6):T131-T145.
  2. Taborda, R., Lopez, J., Karaoglu, H., Urbanic, J., and Bielak, J. (2010). Speeding up finite element wave propagation for large-scale earthquake simulations. Technical Report CMU-PDL-10-109, Carnegie Mellon University, Parallel Data Lab.
  3. Tu, T., Yu, H., Ramírez-Guzmán, L., Bielak, J., Ghattas, O., Ma, K.-L., & O’Hallaron, D.R., 2006. From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing, in Proceedings of the 2006 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, p. 15, IEEE Computer Society, Tampa, Florida.