Difference between revisions of "La Habra Simulations on Titan"
From SCECpedia
Jump to navigationJump to search (Created page with '== Overview == A series of simulations modelling the La Habra 5.1 event will be performed on ORNL Titan with in order to address these scientific and computational goals: * Dem…') |
|||
Line 39: | Line 39: | ||
| Station List | | Station List | ||
| [[File:lahabra_titan_stations.txt]] | | [[File:lahabra_titan_stations.txt]] | ||
− | | | + | | ? |
|- | |- | ||
| Software Version | | Software Version | ||
Line 64: | Line 64: | ||
| | | | ||
|- | |- | ||
− | | Velocity Model | + | | UCVM Version |
+ | | ? | ||
+ | | No heterogeneities | ||
+ | |- | ||
+ | | Velocity Model Version | ||
| CVM-S4 v26 | | CVM-S4 v26 | ||
− | | | + | | ? |
+ | |- | ||
+ | |Miniumum Vs | ||
+ | | 500 m/s | ||
+ | | ? | ||
+ | |- | ||
+ | | Samples per wavelength | ||
+ | | 8 | ||
+ | | | ||
+ | |- | ||
+ | | Hercules Etree | ||
+ | | TBD | ||
+ | | | ||
|} | |} | ||
Revision as of 00:56, 18 June 2014
Contents
Overview
A series of simulations modelling the La Habra 5.1 event will be performed on ORNL Titan with in order to address these scientific and computational goals:
- Demonstrate that Hercules-GPU software is in production status and evaluate its performance versus the CPU version
- Evaluate goodness of fit for synthetic waveforms versus observed at 1.0 Hz, using Po Chen's updated CVM-S4 velocity model as the material properties source for the simulation.
- [Optionally] Validate the simulation results generated by Hercules-GPU and AWP-GPU
Solver Parameters
Parameter | Value | Notes |
---|---|---|
Frequency | 1.0 Hz | |
Simulation Length | 100 s | |
Delta T | 0.001 | ? |
Plane Output Resolution | 250m | ? |
I/O Print Rate | every 10 steps | ? |
Station List | File:Lahabra titan stations.txt | ? |
Software Version | Hercules-GPU i3 |
Simulation Box / Velocity Model
Parameter | Value | Notes |
---|---|---|
Dimensions (km) | 180 x 135 x 61.875 | |
Bounding Box (LL) | ? | |
UCVM Version | ? | No heterogeneities |
Velocity Model Version | CVM-S4 v26 | ? |
Miniumum Vs | 500 m/s | ? |
Samples per wavelength | 8 | |
Hercules Etree | TBD |
Source Parameters
Parameter | Value | Notes |
---|---|---|
Origin Time | 2014/03/29 04:09:42.97 | Source: En-Jui |
Origin Location | -117.930; 33.922; 5.0km | Source: En-Jui |
Strike/Dip/Rake | 134/55/155 | Source: En-Jui |
Slip Function | ? | ? |
References
- Bielak, J., H. Karaoglu, and R. Taborda, 2011. Memory-efficient displacement-based internal friction for wave propagation simulation, Geophysics, 76(6):T131-T145.
- Taborda, R., Lopez, J., Karaoglu, H., Urbanic, J., and Bielak, J. (2010). Speeding up finite element wave propagation for large-scale earthquake simulations. Technical Report CMU-PDL-10-109, Carnegie Mellon University, Parallel Data Lab.
- Tu, T., Yu, H., Ramírez-Guzmán, L., Bielak, J., Ghattas, O., Ma, K.-L., & O’Hallaron, D.R., 2006. From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing, in Proceedings of the 2006 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, p. 15, IEEE Computer Society, Tampa, Florida.