Difference between revisions of "Calling UCVM With Fortran"
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == Calling UCVM | + | == Calling UCVM With Fortran== |
− | Calling | + | Calling UCVM using Fortran is a relatively trivial procedure. In order to do so, you must install [http://scec.usc.edu/scecpedia/UCVM_User_Guide UCVM] as per the guide, including the etree and Proj.4 libraries. It is also necessary to download and install any community velocity models that you will be calling. UCVM requires those velocity models to be added to a configuration file so that they can be referenced within the application. |
+ | |||
+ | Once that initial set up is done, compiling and linking with gfortran is easy. You must include the UCVM library, the Proj.4 library, the e-tree library, as well as any velocity model libraries that you have compiled into UCVM. For CVM-H, please note that there are actually two libraries required: lvxapi and lgeo. | ||
+ | |||
+ | Because the default convention for calling C programs from Fortran automatically appends an underscore to the end of the function name, you must turn that off via a flag called "fno-underscoring". This will make the Fortran compiler try and find foo() instead of foo_(). | ||
+ | |||
+ | As an example, suppose we have a Fortran file, example.f, that calls UCVM. We have compiled UCVM with CVM-S and CVM-H. The code to compile example.f would be as follows: | ||
+ | |||
+ | gfortran example.f -o ./example -L./ucvm-13.9.0/inst/lib -L./cvms/lib -L./cvmh-11.9.1/inst/lib -L./proj-4.8.0/inst/lib -L./euclid3-1.3/libsrc -lucvm -lcvms -lvxapi -lgeo -lproj -letree -fno-underscoring | ||
+ | |||
+ | The basic structure of how to call UCVM within Fortran is outlined in the example below. | ||
== Example Code == | == Example Code == | ||
Line 9: | Line 19: | ||
| | ||
c UCVM Configuration Location | c UCVM Configuration Location | ||
− | CHARACTER(LEN= | + | CHARACTER(LEN=80) ucvmconf |
c Model Name | c Model Name | ||
− | CHARACTER(LEN= | + | CHARACTER(LEN=8) model |
c Number of points we're passing to ucvm_query | c Number of points we're passing to ucvm_query | ||
INTEGER pts | INTEGER pts | ||
Line 65: | Line 75: | ||
| | ||
c Where is our configuration file? | c Where is our configuration file? | ||
− | ucvmconf = "/home/scec-01/davidgil/ucvm.conf" | + | ucvmconf = "/home/scec-01/davidgil/ucvm.conf" // CHAR(0) |
| | ||
c What model are we querying? | c What model are we querying? | ||
− | model = " | + | model = "cvmsi" // CHAR(0) |
| | ||
c Initialize UCVM | c Initialize UCVM |
Latest revision as of 23:46, 22 June 2016
Calling UCVM With Fortran
Calling UCVM using Fortran is a relatively trivial procedure. In order to do so, you must install UCVM as per the guide, including the etree and Proj.4 libraries. It is also necessary to download and install any community velocity models that you will be calling. UCVM requires those velocity models to be added to a configuration file so that they can be referenced within the application.
Once that initial set up is done, compiling and linking with gfortran is easy. You must include the UCVM library, the Proj.4 library, the e-tree library, as well as any velocity model libraries that you have compiled into UCVM. For CVM-H, please note that there are actually two libraries required: lvxapi and lgeo.
Because the default convention for calling C programs from Fortran automatically appends an underscore to the end of the function name, you must turn that off via a flag called "fno-underscoring". This will make the Fortran compiler try and find foo() instead of foo_().
As an example, suppose we have a Fortran file, example.f, that calls UCVM. We have compiled UCVM with CVM-S and CVM-H. The code to compile example.f would be as follows:
gfortran example.f -o ./example -L./ucvm-13.9.0/inst/lib -L./cvms/lib -L./cvmh-11.9.1/inst/lib -L./proj-4.8.0/inst/lib -L./euclid3-1.3/libsrc -lucvm -lcvms -lvxapi -lgeo -lproj -letree -fno-underscoring
The basic structure of how to call UCVM within Fortran is outlined in the example below.
Example Code
program example c UCVM Configuration Location CHARACTER(LEN=80) ucvmconf c Model Name CHARACTER(LEN=8) model c Number of points we're passing to ucvm_query INTEGER pts c The UCVM point data structure. c coord(1) is longitude c coord(2) is latitutde c coord(3) is depth TYPE :: ucvm_point_t REAL*8 coord(3) END TYPE ucvm_point_t c Generic property structure c Source is where it comes from c vp is P-wave velocity in m/s c vs is S-wave velocity in m/s c rho is density in kg/m^3 TYPE :: ucvm_prop_t INTEGER source REAL*8 vp REAL*8 vs REAL*8 rho END TYPE ucvm_prop_t c Returned data structure TYPE :: ucvm_data_t REAL*8 surf REAL*8 vs30 REAL*8 depth INTEGER domain REAL*8 shift_cr REAL*8 shift_gtl type(ucvm_prop_t) crust type(ucvm_prop_t) gtl type(ucvm_prop_t) cmb END TYPE ucvm_data_t c For our example we'll query five points type(ucvm_point_t) point(5) c And we'll get back five sets of material properties type(ucvm_data_t) returnData(5) c Number of points is 5. pts = 5 c We'll start at -118, 34 at 0 depth and go down by 1000m c each step do 10 i = 1, 5 point(i)%coord(1) = -118 point(i)%coord(2) = 34 point(i)%coord(3) = (i - 1) * 1000 10 continue c Where is our configuration file? ucvmconf = "/home/scec-01/davidgil/ucvm.conf" // CHAR(0) c What model are we querying? model = "cvmsi" // CHAR(0) c Initialize UCVM call ucvm_init(ucvmconf) c Add the model to UCVM call ucvm_add_model(model) c Query the model. Note that the number of points is passed c by value, not reference. call ucvm_query(%VAL(pts), point, returnData) print *, model, " results for lon -118, lat 34" c Print out the results. do 20 i = 1, 5 print *, "Depth ", (i - 1) * 1000 print *, "Vs ", returnData(i)%crust%vs print *, "Vp ", returnData(i)%crust%vp print *, "Rho ", returnData(i)%crust%rho 20 continue c Close UCVM now that we've queried the points call ucvm_finalize() end