Difference between revisions of "Containers for CyberShake"

From SCECpedia
Jump to navigationJump to search
Line 95: Line 95:
  
  
'''Build''' (BIG TO DO: Very important... a lot of details and opinions)
+
'''Build''' (see build section for more details)
 
<pre>$ singularity build IMAGE_NAME.sif <source></pre>
 
<pre>$ singularity build IMAGE_NAME.sif <source></pre>
 
<source> include
 
<source> include
Line 105: Line 105:
 
You can shell into a docker UI - explore different containers without pulling or building
 
You can shell into a docker UI - explore different containers without pulling or building
 
<pre>$ singularity shell docker://ubuntu</pre>
 
<pre>$ singularity shell docker://ubuntu</pre>
 
Creating Definition Files: (To Do)
 
Set up complex workflows with Recipe File:
 
Alternatively-
 
Sandbox Directory Prototype Final Container: sudo singularity build --sandbox ubuntu_s docker://ubuntu
 
  
 
== Building or Using Prebuilt Containers ==
 
== Building or Using Prebuilt Containers ==

Revision as of 07:21, 7 August 2020

This page is to document the steps involved in enabling the CyberShake codebase to run in a container environment.

Selection of Containers

The available HPC Containers at the time of selection were Singularity, Charlie Cloud, and Shifter. Between the 3 of these container technologies, Singularity was widely adapted and had more open source tools. Because of this wide adaptation the module already existed in the Frontera system. Singularity has built-in support for different MPI libraries from OpenMPI, MPICH, and IntelMPI to name a few. Shifter, although light weight, is highly reliant on MPICH ABI. This would require site-specific MPI libraries to be copied to the container at runtime.

Installing Singularity

Recommended for people who want to run Singularity locally or create there own custom containers. Use of premade containers does not require installation.

Install Dependencies

sudo apt-get update && sudo apt-get install -y \
build-essential \
uuid-dev \
libgpgme-dev \
squashfs-tools \
libseccomp-dev \
wget \
pkg-config \
git \
cryptsetup-bin


Download Go

export VERSION=1.13.5 OS=linux ARCH=amd64 && \
wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \
sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \
rm go$VERSION.$OS-$ARCH.tar.gz


Set Up Go

echo 'export GOPATH=${HOME}/go' >> ~/.bashrc && \
echo 'export PATH=/usr/local/go/bin:${PATH}:${GOPATH}/bin' >> ~/.bashrc && \
source ~/.bashrc


Install Singularity

export VERSION=3.5.2 && # adjust this as necessary \
wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/singularity-${VERSION}.tar.gz && \
tar -xzf singularity-${VERSION}.tar.gz && \
cd singularity


Check if Singularity Works

git clone https://github.com/sylabs/singularity.git && \
cd singularity && \
git checkout v3.5.2

Setting up a serial container (on your computer)

Get Image singularity pull <source>*

$ singularity build myPythonContainer.sif library://default/ubuntu:latest
  • <sources> include Singularity Container Library (library), Singularity Hub (shub) and Docker Hub (docker).

Execute Command in from Outside Container singularity exec imageName command

$ singularity exec myPythonContainer.sif cat /etc/lsb-release

singularity exec image_name command

$ singularity exec myPythonContainer.sif python3 helloWorld.py

Find Size of Container:

$ singularity cache list
  • Note: Singularity cannot run on the Login Node

Basic Singularity Commands

Pull - pulls a container image from a remote source.

$ sudo singularity pull <remote source>

<remote source>:

1. Singularity Container Services [1]

$ sudo singularity pull --name CONTAINER_NAME.sif library://USER/PULL_PATH:VERSION
  • Note: the path only needs to match the pull card. please see the remote website for example.

2. Singularity Hub [2]

$ sudo singularity pull --name CONTAINER_NAME.sif shub://USER/PULL_PATH:VERSION
  • Note: the path only needs to match the pull card. please see the remote website for example.

3. Docker Hub [3]

$ sudo singularity build CONTAINER_NAME.sif docker://USER/PULL_PATH:VERSION
  • Note 1: docker images have layers and it needs to be merged into 1 singularity image. For that to happen you MUST use: build
  • Note 2: the path only needs to match the pull card. please see the remote website for example.


Exec - executes an EXTERNAL COMMAND

$ singularity exec IMAGE_NAME.sif EXTERNAL_COMMAND


Shell - shells into an existing container

$ singularity shell IMAGE_NAME.sif
  • Note: Your home directory is mounted by default


Run - runs an image. Run is based on the Run Script parameters that were placed into the container when the image was built based the recipe

$ singularity run IMAGE_NAME.sif


Build (see build section for more details)

$ singularity build IMAGE_NAME.sif <source>

<source> include -Another Image either docker or singularity -Singularity definition file (use to be known as a recipe file), usually denoted with name.def


Note: You can shell into a docker UI - explore different containers without pulling or building

$ singularity shell docker://ubuntu

Building or Using Prebuilt Containers

Frontera

Summit

Generic

Containers on Frontera

Serial Containers

1. Prepare

  1. Make helloWorld.py $ echo "print(\"Hello World\")" > helloWorld.py
  2. Install Module (only if using Supercomputer): $ module load tacc-singularity *Note: module save (if you plan to use singularity a lot)

2. Get a Singularity Image on Frontera (*Note: If you want to write a particular program, you must have the dependencies installed in the container) Options:

  1. By copying a image from your local to Frontera with scp
  2. Pull from the Computation Node
idev -N 1; singularity pull singularity pull library://libii/scec/ubuntu18.10-python3:sha256.522b070ad79309ef7526f87c34f0f8518e7d7acc6399aa6372fb0cf28fea25a1 
  • Note: This command works in a sbatch file.

3-1. Interface with Computation Node

a. idev session

idev
ibrun singularity exec ubuntu18.10-python3_latest.sif python3 helloWorld.py

b. sbatch (recommended)

#!/bin/bash

#SBATCH -p development
#SBATCH -t 00:05:00
#SBATCH -n 1
#SBATCH -N 1 
#SBATCH -J test-singularity-python
#SBATCH -o test-singularity-python.o%j
#SBATCH -e test-singularity-python.e%j


# Run the actual program
singularity exec ubuntu18.10-python3_latest.sif python3 helloPython.py

3-2. Execute from Local Computer (if Singularity is installed)

$ singularity exec ubuntu18.10-python3_latest.sif python3 helloWorld.py

MPI Containers

1. Make MPI Program - (Ex: named sum_sqrt.c)

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
    //Grab Argument
    char* temp = argv[1];
    int numN = atoi(temp); //N
    printf("Argument N: %d \n", numN);

    // Initialize the MPI environment
    MPI_Init(NULL, NULL);

    // Get the number of processes
    int world_size;
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);
    // Get the rank of the process
    printf("Processes: %d \n", world_size);
    
    int world_rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

    //Local Variables        
    int nglobal = numN;
    int block = nglobal/world_size;
    int my_lo = (world_rank*block)+1, my_hi = (world_rank+1)*block;
    /** Blocks
     *     int nlocal = nglobal/psize; flipped -> 1000/32 = 31.25 -> 31
     *     31
             int my_lo = (myrank*nlocal)+1, my_hi = (myrank+1)*nlocal);
        

            rank low    high inclusive
            0    1      31 <=TO Do: Add loop to process 0 nlocal-1
            1    32     62
            2    63     93
            3    93     124
            4    124    135
        * */
   
    if(world_rank==0){ //master process
        int mySum=0;
        int pSum=0;
        int totalSum=0;

    printf("Main Process Start\n");
 
        //send to P processors
        for(int myprocessor=1; myprocessor <world_size; myprocessor++){
        MPI_Send(&block, 1, MPI_INT, myprocessor, MPI_ANY_TAG, MPI_COMM_WORLD);
        }

        //process my block
        for(int i=1 ; i <= block; i++){
             mySum+=(i*i);
        }

        //process rounded truncated block
        for(int left_over=block*world_size+1; left_over <= numN; left_over++){
             mySum+=(left_over*left_over);
        }
        totalSum+=mySum;

        //receive P processors
        for(int myprocessor=1; myprocessor < world_size; myprocessor++){
            MPI_Recv(&pSum, 1, MPI_INT, myprocessor, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
            totalSum+=pSum;
            printf("MpSum: %d\n", pSum);
        }
 
        //print final total
        printf("Sum of Squares for %d is %d\n", numN, totalSum);

        printf("Main Process End");
    }else if(world_rank != 0){ //worker process
        printf("Start Process: %d\n", world_rank);
        int mySum=0;
        //receive
        MPI_Recv(&block, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

        //calculate my sum of square
        for(int i=my_lo; i < my_hi; i++){
             mySum+=(i*i);
        }

        //send my sum
        MPI_Send(&mySum, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD);
        printf("End Process: %d\n", world_rank);
    }


    // Finalize the MPI environment.
    MPI_Finalize();

    return 0;
}


2. Compile Program

$ mpicc -o sum_sqrt sum_sqrt.c


3. Build or Pull a Singularity Image with the same MPI library installed inside the container [4] mvapich preinstalled in this container

$ idev -N 1
$ singularity pull shub://mkandes/ubuntu-mvapich

4. Execute your command

$ ibrun singularity exec ubuntu-mvapich_latest.sif ./sum_sqrt 100000

Resources

  1. Singularity Guide [5]
  2. Singularity Repository [6]
  3. Singularity Container Library [7]
  4. Singularity Hub [8]
  5. Docker Hub [9]

TACC - Frontera

  1. TACC Containers [10] (More geared for people who are familiar with Docker Containers)