Difference between revisions of "Virtual Shaker"

From SCECpedia
Jump to navigationJump to search
Line 1: Line 1:
 
CME team at SCEC can produce forward wave propagation data – ground motion time-histories (seismograms) for simulated earthquakes of various magnitudes. The largest, full dynamic earthquake simulation of magnitude 8 on southern San Andreas fault was led by SCEC last year. The seismograms produced by this simulation included frequency components up to 2 Hz. These seismograms can be applied to steel buildings models in virtual environment with [http://www.frame3d.caltech.edu/ Frame3D] software, a building analysis program developed by [http://krishnan.caltech.edu/krishnan/ Swaminathan Krishnan] at California Institute of Technology. Frame3D allows us to perform efficient three-dimensional nonlinear analysis of steel buildings subject to ground acceleration records.
 
CME team at SCEC can produce forward wave propagation data – ground motion time-histories (seismograms) for simulated earthquakes of various magnitudes. The largest, full dynamic earthquake simulation of magnitude 8 on southern San Andreas fault was led by SCEC last year. The seismograms produced by this simulation included frequency components up to 2 Hz. These seismograms can be applied to steel buildings models in virtual environment with [http://www.frame3d.caltech.edu/ Frame3D] software, a building analysis program developed by [http://krishnan.caltech.edu/krishnan/ Swaminathan Krishnan] at California Institute of Technology. Frame3D allows us to perform efficient three-dimensional nonlinear analysis of steel buildings subject to ground acceleration records.
  
 +
[[File:Sites.png|256px|thumb|right|Fig 1: Building Sites]]
 
We needed a package to interface ground motion data with structural analysis software to visualize building response to ground motion time-histories. VShaker is set of tools developed at SCEC to provide this interface. It provides formatted ground motion time-history input to Frame3D software, process and visualizes its output data. The building analysis results from Frame3D are processed by VShaker program in two steps. The program first combines structural model, response data from Frame3D and ground motion data to build three-dimensional geometric representations of the structure at specified time intervals. These geometric representations are output as Wavefront OBJ files - a universal file format supported by major 3D rendering programs. In the next step VShaker can combine these snapshots to produce simple animations of structural motion with various viewpoints.
 
We needed a package to interface ground motion data with structural analysis software to visualize building response to ground motion time-histories. VShaker is set of tools developed at SCEC to provide this interface. It provides formatted ground motion time-history input to Frame3D software, process and visualizes its output data. The building analysis results from Frame3D are processed by VShaker program in two steps. The program first combines structural model, response data from Frame3D and ground motion data to build three-dimensional geometric representations of the structure at specified time intervals. These geometric representations are output as Wavefront OBJ files - a universal file format supported by major 3D rendering programs. In the next step VShaker can combine these snapshots to produce simple animations of structural motion with various viewpoints.
  
[[File:Sites.png|256px|thumb|right|Fig 1: Building Sites]]
+
[[File:M8-nr-nc-front.png|256px|thumb|right|Fig 2: 18-Story Northridge building (Front view).]]
 +
[[File:M8-nr-nc-side.png|256px|thumb|right|Fig 3: 18-Story Northridge building (Side view).]]
 +
[[File:M8-nr-nc-top-p1.png|256px|thumb|right|Fig 3: 18-Story Northridge building (Top view).]]
 +
 
 
We are currently conducting a study to evaluate the response of two types of steel buildings with fundamental periods of 0.63 and 4.54 seconds subjected to acceleration records from SCEC M8 Simulation. These buildings are being simulated at eight locations spread out across Southern California. The locations were chosen based on a previous study conducted by Krishnan et al., on response of tall steel buildings for magnitude 7.9 1857 southern San Andreas Earthquake.  The choice of building locations will allow us to compare the results of building response from our study to those reported in the earlier study. The tall steel building with fundamental period of 4.54 seconds had comparable responses to those reported in Mw 7.9 earthquake study.
 
We are currently conducting a study to evaluate the response of two types of steel buildings with fundamental periods of 0.63 and 4.54 seconds subjected to acceleration records from SCEC M8 Simulation. These buildings are being simulated at eight locations spread out across Southern California. The locations were chosen based on a previous study conducted by Krishnan et al., on response of tall steel buildings for magnitude 7.9 1857 southern San Andreas Earthquake.  The choice of building locations will allow us to compare the results of building response from our study to those reported in the earlier study. The tall steel building with fundamental period of 4.54 seconds had comparable responses to those reported in Mw 7.9 earthquake study.
 
    
 
    

Revision as of 22:11, 8 September 2010

CME team at SCEC can produce forward wave propagation data – ground motion time-histories (seismograms) for simulated earthquakes of various magnitudes. The largest, full dynamic earthquake simulation of magnitude 8 on southern San Andreas fault was led by SCEC last year. The seismograms produced by this simulation included frequency components up to 2 Hz. These seismograms can be applied to steel buildings models in virtual environment with Frame3D software, a building analysis program developed by Swaminathan Krishnan at California Institute of Technology. Frame3D allows us to perform efficient three-dimensional nonlinear analysis of steel buildings subject to ground acceleration records.

Fig 1: Building Sites

We needed a package to interface ground motion data with structural analysis software to visualize building response to ground motion time-histories. VShaker is set of tools developed at SCEC to provide this interface. It provides formatted ground motion time-history input to Frame3D software, process and visualizes its output data. The building analysis results from Frame3D are processed by VShaker program in two steps. The program first combines structural model, response data from Frame3D and ground motion data to build three-dimensional geometric representations of the structure at specified time intervals. These geometric representations are output as Wavefront OBJ files - a universal file format supported by major 3D rendering programs. In the next step VShaker can combine these snapshots to produce simple animations of structural motion with various viewpoints.

Fig 2: 18-Story Northridge building (Front view).
Fig 3: 18-Story Northridge building (Side view).
Fig 3: 18-Story Northridge building (Top view).

We are currently conducting a study to evaluate the response of two types of steel buildings with fundamental periods of 0.63 and 4.54 seconds subjected to acceleration records from SCEC M8 Simulation. These buildings are being simulated at eight locations spread out across Southern California. The locations were chosen based on a previous study conducted by Krishnan et al., on response of tall steel buildings for magnitude 7.9 1857 southern San Andreas Earthquake. The choice of building locations will allow us to compare the results of building response from our study to those reported in the earlier study. The tall steel building with fundamental period of 4.54 seconds had comparable responses to those reported in Mw 7.9 earthquake study.

VShaker has the potential to produce animations of structural motion after significant earthquake to aid in identification of damage to structural elements. It can also be used to effectively visualize performance of proposed building models to simulated earthquakes.


Caltech Virtual Shaker

Building Design for M8 Study

Frame3D

Caltech Virtual Shaker

Software Design

Convert Virtual Shaker Output to OBJ Files

Map Virtual Shaker Results to Damage

Render OBJ File


M8 Building Response Study

Building used in M8 response study is described here: Building In Use

Information on the SCEC M8 Simulation: M8 Simulation

M8 seismograms used in Building Response Study from Websims Websims