Difference between revisions of "CyberShake Study 24.8"

From SCECpedia
Jump to navigationJump to search
 
Line 1,719: Line 1,719:
 
We ran approximately 27,720 jobs.  Of these, 7245 were remote, 8190 were local, 5985 were directory creation, 5355 were staging, and 945 were registration.
 
We ran approximately 27,720 jobs.  Of these, 7245 were remote, 8190 were local, 5985 were directory creation, 5355 were staging, and 945 were registration.
  
63,409,304 three-component seismograms, 11.5 billion low-frequency IMs, and 22.8 billion broadband IMs were calculated.
+
126,818,608 three-component seismograms (half LF, half BB), 11.5 billion low-frequency IMs, and 22.8 billion broadband IMs were calculated.
  
 
== Production Checklist ==
 
== Production Checklist ==

Latest revision as of 06:32, 5 December 2024

CyberShake Study 24.8 is a study in Northern California which includes deterministic low-frequency (0-1 Hz) and stochastic high-frequency (1-50 Hz) simulations. We will use the Graves & Pitarka (2022) rupture generator and the high frequency modules from the SCEC Broadband Platform v22.4. This study includes vertical component seismograms, period-dependent durations, and Fourier spectra IMs, and a reduction in minimum Vs to 400 m/s.

Contents

Status

This study was completed on 11/8/24 at 6:15:15 PST.

The low-frequency calculations finished on 10/30/24 at 04:52:52 PDT.

Study results are posted below.

Data Products

Low-frequency hazard maps are available here: Low-frequency Hazard Maps.

Low-frequency GMM comparisons are available here, using top velocity mesh value as Vs30 and Thompson Vs30.

Broadband hazard maps are available here: Broadband Hazard Maps.

Broadband GMM comparisons are available here: Broadband GMM Comparisons.

Science Goals

The science goals for this study are:

  • To perform an updated broadband study for the greater Bay Area.
  • To use an updated rupture generator and improved velocity model from Study 18.8.
  • To use the same parameters as in Study 22.12 when possible to make comparisons between the studies simple.

Technical Goals

The technical goals for this study are:

  • Use Frontier for the SGTs and Frontera for the post-processing and high-frequency calculations.
  • Use a modified approach for the production database, to improve performance.

Sites

For this study, we chose to focus on a smaller region than in Study 18.8. Starting with the Study 18.8 region, we selected a smaller (180 km x 100 km) box extending roughly from San Jose to Santa Rosa, containing 315 sites.

Study 24 1 site map.png

Ruptures to Include

Summary: we decided to exclude the southern San Andreas events from Study 24.8. This was implemented by creating a new ERF with ID 64, which includes all the ERF 36 ruptures except for the southern San Andreas events.

Historically, we have determined which ruptures to include in a CyberShake run by calculating the distance between the site and the closest part of the rupture surface. If that distance is less than 200 km, we then include all ruptures which take place on that surface, including ruptures which may extend much farther away from the site than 200 km.

For Northern California sites, this means that sites around San Jose and south include southern San Andreas events (events which rupture the northernmost segment of the southern San Andreas) within 200 km. Since there are some UCERF2 ruptures which extend from the Parkfield segment all the way down to Bombay Beach, the simulation volumes for some of these Northern California sites cover most of the state. This was the case for Study 18.8 (sample volumes can be seen on this page). This required tiling together 3 3D models and a background 1D model.

To simplify the velocity model and reduce the volumes, we are investigating omitting southern San Andreas events from this study.

Source Contribution Curves

Below are source contribution curves for 3 sites: s3430 (southwest corner of the study region), s3446 (southeast corner of the study region), and SJO (San Jose). In general, the sSAF events are about the 3rd largest contributor at long periods and medium-to-long return periods.

Site 2 sec 3 sec 5 sec 10 sec
s3430
S3430 run6408 2sec contributions.png
S3430 run6408 3sec contributions.png
S3430 run6408 5sec contributions.png
S3430 run6408 10sec contributions.png
s3446
S3446 run6452 2sec contributions.png
S3446 run6452 3sec contributions.png
S3446 run6452 5sec contributions.png
S3446 run6452 10sec contributions.png
SJO
SJO run6987 2sec contributions.png
SJO run6987 3sec contributions.png
SJO run6987 5sec contributions.png
SJO run6987 10sec contributions.png

We also looked at the source contributions for these 3 sites from ASK 2014. In general, the sSAF events play a reduced role compared to the CyberShake results.

Site 2 sec 3 sec 5 sec 10 sec
s3430
S3430 ASK2014 2sec contributions.png
S3430 ASK2014 3sec contributions.png
S3430 ASK2014 5sec contributions.png
S3430 ASK2014 10sec contributions.png
s3446
S3446 ASK2014 2sec contributions.png
S3446 ASK2014 3sec contributions.png
S3446 ASK2014 5sec contributions.png
S3446 ASK2014 10sec contributions.png
SJO
SJO ASK2014 2sec contributions.png
SJO ASK2014 3sec contributions.png
SJO ASK2014 5sec contributions.png
SJO ASK2014 10sec contributions.png

Disaggregations

From Study 18.8, we looked at disaggregations for s3430, s3446, and SJO at 1e-3 (1000 yr), 4e-4 (2500 yr), and 1e-4 (10000 yr) probability levels, at 2 and 10 seconds. We list the top 3 contributing sources from the southern SAF, their magnitude ranges, and their contributing percentages.

The only significant contributions are for site s3446 at 10 second period. Those come from large events, with median magnitude 7.85 or higher.

s3430

Period 1e-3 4e-4 1e-4
2 sec 80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
10 sec 86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), 0.01%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), 0.01%
85 (S. San Andreas;PK+CH+CC+BB+NM+SM, M7.55-8.15), <0.01%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%

s3446

Period 1e-3 4e-4 1e-4
2 sec 84 (S. San Andreas;PK+CH+CC+BB+NM, M7.45-7.95), <0.01%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
10 sec 85 (S. San Andreas;PK+CH+CC+BB+NM+SM, M7.55-8.15), 6.83%
86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), 4.18%
84 (S. San Andreas;PK+CH+CC+BB+NM, M7.45-7.95), 1.53%
85 (S. San Andreas;PK+CH+CC+BB+NM+SM, M7.55-8.15), 4.27%
86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), 3.09%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), 1.08%
86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), 1.19%
85 (S. San Andreas;PK+CH+CC+BB+NM+SM, M7.55-8.15), 1.19%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), 0.55%

SJO

Period 1e-3 4e-4 1e-4
2 sec 80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%
10 sec 85 (S. San Andreas;PK+CH+CC+BB+NM+SM, M7.55-8.15), 0.09%
86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), 0.07%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), 0.05%
89 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG+CO, M7.75-8.45), 0.01%
88 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB+SSB+BG, M7.75-8.35), 0.01%
86 (S. San Andreas;PK+CH+CC+BB+NM+SM+NSB, M7.65-8.25), <0.01%
80 (S. San Andreas;PK, M5.65-6.35), <0.01%
81 (S. San Andreas;PK+CH, M6.75-7.35), <0.01%
82 (S. San Andreas;PK+CH+CC, M7.15-7.65), <0.01%

Velocity Model

We will perform validation of the proposed velocity model using northern California BBP events.

To line up closely with the USGS SF model angle, we will generate volumes using an angle of -36 degrees.

For generating sample meshes, we will use site s3446, a site in the SE corner of the study region with one of the larger volumes.

Simulation region for s3446 is in yellow. Also plotted are the extents of the USGS SF model, the USGS regional model, CCA-06, and CVM-S4.26.M01.

Primary 3D model

Given the extensive low-velocity near-surface regions in the USGS SF CVM, we plan to use a minimum Vs of 400 m/s (and therefore a grid spacing of 80 m).

Sfcvm h0 2.png

Initial slices with the USGS SF CVM are available here: UCVM_sfcvm_geomodelgrid. We found two sharply defined high-velocity patches visible on the surface slice, one in the East Bay near the mountains, and another near Gilroy. These are regions where the gabbro type goes to the surface, and so the SF CVM geological rules dictate that the high velocities go to the surface as well.

Eastbay high vs vertical profile.png

These patches are not present in the Vs30 models - for instance, for the point (37.6827, -122.086) SF CVM gives a surface Vs of about 3500 m/s, but Wills (2015) has Vs30=710 and Thompson (2018) has Vs30=702.

Potential modification to gabbro regions

A candidate modification to the gabbro regions to reduce the near-surface velocities is to apply the approach used by Arben Pitarka and Rie Nakata, detailed below.

Component At surface At 7.75 km depth derivation
Vp 4.2 km/s 5.7 km/s Linear interpolation
Vs 2.44 km/s 3.4 km/s Vp/Vs relationship
Density 2.76 g/cm3 2.87 g/cm3 Vp/Density relationship

The Vs (km/s) values are derived from Vp (km/s) using the San Leandro Gabbro relationship:

Vs = 0.7858 - 1.2344*Vp + 0.7949*Vp^2 - 0.1238*Vp^3 + 0.0064*Vp^4

The density (g/cm3) values are derived from Vp (km/s) using the San Leandro Gabbro relationship:

density = 2.4372 + 0.0761*Vp

A sample plot is below.

Nakata and Pitarka modification slice.png

Background model

There are several candidates to use as a background model for the regions outside of the 3D model region.

1D models

  1. 1D Broadband Platform model - either Northern California, Central California, or the Southern Sierras.
  2. 1D CVM-S4 background model
  3. Extend eastern edge of SFCVM model to fill the remaining volume
  4. 1D CCA model (derived from averaging CCA-06), used in Study 17.3

3D models

  1. 3D CANVAS long-period tomography model
  2. 3D National Crustal model

Plots of these options are available below.

1D Model BBP NorCal BBP CenCal BBP SouthernSierras CVM-S4.26.M01 1D background CCA 1D
Plot
Nocal500.png
Centralcal500.png
Ssn2-500.png
Cvms426 1dbackground.png
Cs cca ucvm 1d all.png

Cross-sections

Cross-sections, no smoothing, CVM-S4.26.M01 1D background

Below are horizontal cross-sections at various depths taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06, CVM-S4.26.M01. This model was extracted on 2/28/24, and is one of the largest volumes needed for the study.

0m 80m 800m 2000m 4000m 10000m
S3446 0m nosmooth vs.png
S3446 80m nosmooth vs.png
S3446 800m nosmooth vs.png
S3446 2000m nosmooth vs.png
S3446 4000m nosmooth vs.png
S3446 10000m nosmooth vs.png

Below are vertical cross-sections taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06, CVM-S4.26.M01. This model was extracted on 2/28/24, and is one of the largest volumes needed for the study.

S3446 cross section locations.png
Y=2400 Y=4800 Y=7200
S3446 x 2400 vs.png
S3446 x 4800 vs.png
S3446 x 7200 vs.png
X=1400 X=2800
S3446 y 1400 vs.png
S3446 y 2800 vs.png

Cross-sections, smoothing, CVM-S4.26.M01 1D background

Below are horizontal cross-sections at various depths taken from a model for s3446 generated with smoothing, with the tiling SFCVM, CCA-06, CVM-S4.26.M01. This model was extracted on 2/28/24.

0m 80m 800m 2000m 4000m 10000m
S3446 0m smooth vs.png
S3446 80m smooth vs.png
S3446 800m smooth vs.png
S3446 2000m smooth vs.png
S3446 4000m smooth vs.png
S3446 10000m smooth vs.png

Below are vertical cross-sections taken from a model for s3446 generated with smoothing, with the tiling SFCVM, CCA-06, CVM-S4.26.M01. This model was extracted on 2/28/24.

Y=2400 Y=4800 Y=7200
S3446 x 2400 smoothed vs.png
S3446 x 4800 smoothed vs.png
S3446 x 7200 smoothed vs.png
X=1400 X=2800
S3446 y 1400 smoothed vs.png
S3446 y 2800 smoothed vs.png

Cross-sections, no smoothing, Southern Sierra BBP 1D background

Below are horizontal cross-sections at various depths taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06, Southern Sierra BBP1D model. This model was extracted on 3/13/24.

0m 80m 800m 2000m 4000m 10000m
S3446 0m nosmooth ss bbp1d vs.png
S3446 80m nosmooth ss bbp1d vs.png
S3446 800m nosmooth ss bbp1d vs.png
S3446 2000m nosmooth ss bbp1d vs.png
S3446 4000m nosmooth ss bbp1d vs.png
S3446 10000m nosmooth ss bbp1d vs.png

Below are horizontal cross-sections at various depths taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06, Southern Sierra BBP1D model. This model was extracted on 3/13/24.

Y=2400 Y=4800 Y=7200
S3446 x 2400 nosmooth ss bbp1d vs.png
S3446 x 4800 nosmooth ss bbp1d vs.png
S3446 x 7200 nosmooth ss bbp1d vs.png
X=1400 X=2800
S3446 y 1400 nosmooth ss bbp1d vs.png
S3446 y 2800 nosmooth ss bbp1d vs.png

Cross-sections, no smoothing, extended SFCVM Sierra 1D background, CCA + taper

Below are horizontal cross-sections at various depths taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06 + taper, 1D representation of the Sierra foothills in SFCVM. This model was extracted on 4/2/24.

0m 80m 800m 2000m 4000m 10000m
S3446 0m nosmooth sfcvm extended vs.png
S3446 80m nosmooth sfcvm extended vs.png
S3446 800m nosmooth sfcvm extended vs.png
S3446 2000m nosmooth sfcvm extended vs.png
S3446 4000m nosmooth sfcvm extended vs.png
S3446 10000m nosmooth sfcvm extended vs.png

Below are vertical cross-sections.

Y=2400 Y=4800 Y=7200
S3446 x 2400 nosmooth sfcvm extended vs.png
S3446 x 4800 nosmooth sfcvm extended vs.png
S3446 x 7200 nosmooth sfcvm extended vs.png
X=1400 X=2800
S3446 y 1400 nosmooth sfcvm extended vs.png
S3446 y 2800 nosmooth sfcvm extended vs.png


Cross-sections, smoothing, extended SFCVM Sierra 1D background, CCA + taper

Below are horizontal cross-sections at various depths taken from a model for s3446 generated with smoothing, with the tiling SFCVM, CCA-06 + taper, 1D representation of the Sierra foothills in SFCVM. This model was extracted on 4/2/24.

0m 80m 800m 2000m 4000m 10000m
S3446 0m smooth sfcvm extended vs.png
S3446 80m smooth sfcvm extended vs.png
S3446 800m smooth sfcvm extended vs.png
S3446 2000m smooth sfcvm extended vs.png
S3446 4000m smooth sfcvm extended vs.png
S3446 10000m smooth sfcvm extended vs.png

Below are vertical cross-sections.

Y=2400 Y=4800 Y=7200
S3446 x 2400 smooth sfcvm extended vs.png
S3446 x 4800 smooth sfcvm extended vs.png
S3446 x 7200 smooth sfcvm extended vs.png
X=1400 X=2800
S3446 y 1400 smooth sfcvm extended vs.png
S3446 y 2800 smooth sfcvm extended vs.png

Cross-sections, no smoothing, extended SFCVM Sierra 1D background with taper, CCA + taper

Below are horizontal cross-sections at various depths taken from a model for s3446 generated without smoothing, with the tiling SFCVM, CCA-06 + taper, 1D representation of the Sierra foothills in SFCVM + taper. This plot includes our typical practice of populating the surface point by querying the models at a depth of grid_spacing/4, or 20m. This model was extracted on 4/9/24.

Surface (20m) 80m 800m 2000m 4000m 10000m
4 9 s3446 0m nosmooth sfcvm extended taper vs.png
4 9 s3446 80m nosmooth sfcvm extended taper vs.png
4 9 s3446 800m nosmooth sfcvm extended taper vs.png
4 9 s3446 2000m nosmooth sfcvm extended taper vs.png
4 9 s3446 4000m nosmooth sfcvm extended taper vs.png
4 9 s3446 10000m nosmooth sfcvm extended taper vs.png
Y=2400 Y=4800 Y=7200
4 9 s3446 x 2400 nosmooth vs.png
4 9 s3446 x 4800 nosmooth vs.png
4 9 s3446 x 7200 nosmooth vs.png
X=1400 X=2800
4 9 s3446 y 1400 nosmooth vs.png
4 9 s3446 y 2800 nosmooth vs.png

Candidate Model (RC1)

Our candidate model is generated using (1) SFCVM with the gabbro modifications; (2) CCA-06 with the merged taper in the top 700m; (3) the NC1D model with the merged taper in the top 700m.

Surface (20m) 80m 800m 2000m 4000m 10000m
4 19 s3446 20m smooth RC1 vs.png
4 19 s3446 80m smooth RC1 vs.png
4 19 s3446 800m smooth RC1 vs.png
4 19 s3446 2000m smooth RC1 vs.png
4 19 s3446 4000m smooth RC1 vs.png
4 19 s3446 10000m smooth RC1 vs.png

Vp/Vs Ratio Adjustment

For this study, we are modifying our approach to preserving the Vp/Vs ratio when applying a Vs floor to avoid very large Vp/Vs ratios.

Our previous approach for applying the Vs floor is as follows:

  1. If Vs < Vs_floor (400 m/s):
    1. Calculate the Vp/Vs ratio
    2. Change Vs to the floor
    3. Calculate a new Vp using Vp = Vs_floor * Vp/Vs ratio
  2. Apply Vp and density floors

However, there are some sites with very high Vp/Vs ratios near the surface where Vs is low. Therefore, if this algorithm is applied, unexpectedly high Vp values may result.

Here is a vertical profile at site s3240 (Moffett Field). You can see the high surface Vp value:

S3240 vert profile.png

Looking in more detail, here are the Vp and Vs values in the top 90m at s3240:

Depth (m) Vp Vs Vp/Vs ratio Adjusted Vs Adjusted Vp
0 739 81 9.12 400 3649
10 1009 82 12.30 400 4922
20 1309 84 15.58 400 6233
30 1502 152 9.88 400 3953
40 1590 285 5.58 400 3649
50 1678 418 4.01
60 1711 436 3.92
70 1744 453 3.85
80 1776 471 3.77
90 1807 489 3.70

Since we are using 80m grid spacing, and populating the surface point at a depth of (grid spacing)/4 = 20m, the values at 20m and 80m are being used. The very high Vp/Vs ratio at 20m means that a very high Vp value is used.

These high Vp/Vs ratios occur at a number of locations around San Francisco Bay, illustrated in the surface Vp plot below:

S3240 surface vp.png

To solve this problem, we will modify the process for applying the Vs floor. We will use the Vp/Vs ratio at 80m depth instead of at the surface, and use a maximum ratio of 4. A similar process was used in the HighF project.

  1. If Vs < Vs_floor (400 m/s):
    1. If surface grid point:
      1. Calculate Vp/Vs ratio at 1 grid point depth (80m)
      2. If Vp/Vs ratio > 4:
        1. Lower Vp/Vs ratio to 4
    2. Else:
      1. Calculate Vp/Vs ratio at this grid point
    3. New Vs = Vs_floor
    4. New Vp = Vs * (potentially modified) Vp/Vs ratio.
  2. Apply Vp and density floors.

Below is a surface Vp plot with the ratio modification. Note that the areas of previous high Vp have been reduced.

S3240 modifiedratio surface vp.png


Candidate Model (RC2)

Candidate model RC2 is generated using the following procedure:

  1. Tiling with:
    1. USGS SFCVM v21.1
    2. CCA-06
    3. 1D background model, derived as an extension of the Sierra section of the SFCVM model and described here.
  2. Surface points are populated using a depth of (grid spacing)/4, which is 20m for these meshes.
  3. An Ely-Jordan taper is applied to the top 700m across all models using Vs30 values from Thompson et al. (2020).
  4. Application of a Vs floor of 400 m/s, using the procedure outlined in CyberShake_Study_24.8#Vp/Vs Ratio Adjustment.
  5. Smoothing is applied within 20km of a model boundary.

Vs plots:

Surface (20m) 80m 160m 320m 640m 2000m 4000m 10000m
8 5 s3446 20m smooth RC2 vs.png
8 5 s3446 80m smooth RC2 vs.png
8 5 s3446 160m smooth RC2 vs.png
8 5 s3446 320m smooth RC2 vs.png
8 5 s3446 640m smooth RC2 vs.png
8 5 s3446 2000m smooth RC2 vs.png
8 5 s3446 4000m smooth RC2 vs.png
8 5 s3446 10000m smooth RC2 vs.png

Surface Vp plot:

8 5 s3446 20m smooth RC2 vp.png

Taper impact

Below are velocity profiles for the 20 stress test sites, with and without the near-surface taper.

Site Without taper With taper (top 700m) Vs overlay
ALBY
ALBY notaper profile.png
ALBY taper profile.png
ALBY overlay profile.png
BLMT
BLMT notaper profile.png
BLMT taper profile.png
BLMT overlay profile.png
CFCS
CFCS notaper profile.png
CFCS taper profile.png
CFCS overlay profile.png
CSU1
CSU1 notaper profile.png
CSU1 taper profile.png
CSU1 overlay profile.png
CSUEB
CSUEB notaper profile.png
CSUEB taper profile.png
CSUEB overlay profile.png
DALY
DALY notaper profile.png
DALY taper profile.png
DALY overlay profile.png
HAYW
HAYW notaper profile.png
HAYW taper profile.png
HAYW overlay profile.png
LICK
LICK notaper profile.png
LICK taper profile.png
LICK overlay profile.png
LVMR
LVMR notaper profile.png
LVMR taper profile.png
LVMR overlay profile.png
MSRA
MSRA notaper profile.png
MSRA taper profile.png
MSRA overlay profile.png
NAPA
NAPA notaper profile.png
NAPA taper profile.png
NAPA overlay profile.png
PTRY
PTRY notaper profile.png
PTRY taper profile.png
PTRY overlay profile.png
s3171
S3171 notaper profile.png
S3171 taper profile.png
S3171 overlay profile.png
s3240
S3240 notaper profile.png
S3240 taper profile.png
S3240 overlay profile.png
s3446
S3446 notaper profile.png
S3446 taper profile.png
S3446 overlay profile.png
SFRH
SFRH notaper profile.png
SFRH taper profile.png
SFRH overlay profile.png
SSFO
SSFO notaper profile.png
SSFO taper profile.png
SSFO overlay profile.png
SSOL
SSOL notaper profile.png
SSOL taper profile.png
SSOL overlay profile.png
SRSA
SRSA notaper profile.png
SRSA taper profile.png
SRSA overlay profile.png
SJO
SJO notaper profile.png
SJO taper profile.png
SJO overlay profile.png

Strain Green Tensors

We will use the HIP implementation of AWP-ODC-SGT, with the following parameters:

  • Grid spacing: 80 m
  • DT: 0.004 sec
  • NT: 50000 timesteps by default, increased to 75000 for sites with any site-to-hypocenter distance greater than 450 km.
  • Minimum Vs: 400 m/s

SGTs will be saved with a time decimation of 10, so every 0.04 sec.

Vertical Component

We will include vertical (Z) component seismograms in this study. To support this, we will produce Z-component SGTs and include Z-component synthesis in the post-processing and broadband stages.

Verification that the Z component codes are working correctly is documented at Vertical component verification.

Rupture Generator

We will use the same version of the rupture generator that we used for Study 22.12, v5.5.2.

To match the SGT timestep, SRFs will be generated with dt=0.04s, deterministic seismograms will be output with dt=0.04s, and broadband seismograms will use dt=0.01s.

High-frequency codes

We will use the Graves & Pitarka high-frequency codes from the BBP v22.4.

However, since we are using a denser mesh (80m) and a lower minimum Vs (400 m/s), we will not apply site correction to the low-frequency seismograms before combining. Rob states, You may recall that there is a klugy process we have used to estimate the Vref value based on the Vsmin and grid spacing of the model. But, it has only been applied for the case of h=100 m and Vsmin=500 m/s. What I found here is that estimating Vref using the 80m & 400m/s model is that Vref is almost always less than Vs30 (i.e., Vsite). This means that when the site adjustment is applied, the motions are deamplified. This is why we see such a poor fit for the 3D case when using the estimated Vref values. My conclusion at this point is that if we run the 3D calculation with 80 m grid spacing and Vsmin of 400 m/s (or lower), then we probably do not need to apply any site adjustments.

Hazard Curve Tests

We are calculating test hazard curves for the following sites:

Study 24.6 test sites map.png

Results using velocity model RC1

Low-frequency curves

Site 2 sec 3 sec 5 sec 10 sec Vertical profile
s3446
S3446 10676 2sec RotD50.png
S3446 10676 3sec RotD50.png
S3446 10676 5sec RotD50.png
S3446 10676 10sec RotD50.png
S3446 vert profile.png
S3446 10676 2sec RotD50 log.png
S3446 10676 3sec RotD50 log.png
S3446 10676 5sec RotD50 log.png
S3446 10676 10sec RotD50 log.png
s3240
S3240 10677 2sec RotD50.png
S3240 10677 3sec RotD50.png
S3240 10677 5sec RotD50.png
S3240 10677 10sec RotD50.png
S3240 vert profile.png
S3240 10677 2sec RotD50 log.png
S3240 10677 3sec RotD50 log.png
S3240 10677 5sec RotD50 log.png
S3240 10677 10sec RotD50 log.png
ALBY
ALBY 10678 2sec RotD50.png
ALBY 10678 3sec RotD50.png
ALBY 10678 5sec RotD50.png
ALBY 10678 10sec RotD50.png
ALBY vert profile.png
ALBY 10678 2sec RotD50 log.png
ALBY 10678 3sec RotD50 log.png
ALBY 10678 5sec RotD50 log.png
ALBY 10678 10sec RotD50 log.png
SJO
SJO 10683 2sec RotD50.png
SJO 10683 3sec RotD50.png
SJO 10683 5sec RotD50.png
SJO 10683 10sec RotD50.png
SJO vert profile.png
SJO 10683 2sec RotD50 log.png
SJO 10683 3sec RotD50 log.png
SJO 10683 5sec RotD50 log.png
SJO 10683 10sec RotD50 log.png
CFCS
CFCS 10684 2sec RotD50.png
CFCS 10684 3sec RotD50.png
CFCS 10684 5sec RotD50.png
CFCS 10684 10sec RotD50.png
CFCS vert profile.png
CFCS 10684 2sec RotD50 log.png
CFCS 10684 3sec RotD50 log.png
CFCS 10684 5sec RotD50 log.png
CFCS 10684 10sec RotD50 log.png
s3171
S3171 10685 2sec RotD50.png
S3171 10685 3sec RotD50.png
S3171 10685 5sec RotD50.png
S3171 10685 10sec RotD50.png
S3171 vert profile.png
S3171 10685 2sec RotD50 log.png
S3171 10685 3sec RotD50 log.png
S3171 10685 5sec RotD50 log.png
S3171 10685 10sec RotD50 log.png
CSUEB
CSUEB 10687 2sec RotD50.png
CSUEB 10687 3sec RotD50.png
CSUEB 10687 5sec RotD50.png
CSUEB 10687 10sec RotD50.png
CSUEB vert profile.png
CSUEB 10687 2sec RotD50 log.png
CSUEB 10687 3sec RotD50 log.png
CSUEB 10687 5sec RotD50 log.png
CSUEB 10687 10sec RotD50 log.png
CSU1
CSU1 10686 2sec RotD50.png
CSU1 10686 3sec RotD50.png
CSU1 10686 5sec RotD50.png
CSU1 10686 10sec RotD50.png
CSU1 vert profile.png
CSU1 10686 2sec RotD50 log.png
CSU1 10686 3sec RotD50 log.png
CSU1 10686 5sec RotD50 log.png
CSU1 10686 10sec RotD50 log.png
SFRH
SFRH 10681 2sec RotD50.png
SFRH 10681 3sec RotD50.png
SFRH 10681 5sec RotD50.png
SFRH 10681 10sec RotD50.png
SFRH vert profile.png
SFRH 10681 2sec RotD50 log.png
SFRH 10681 3sec RotD50 log.png
SFRH 10681 5sec RotD50 log.png
SFRH 10681 10sec RotD50 log.png
LVMR
LVMR 10682 2sec RotD50.png
LVMR 10682 3sec RotD50.png
LVMR 10682 5sec RotD50.png
LVMR 10682 10sec RotD50.png
LVMR vert profile.png
LVMR 10682 2sec RotD50 log.png
LVMR 10682 3sec RotD50 log.png
LVMR 10682 5sec RotD50 log.png
LVMR 10682 10sec RotD50 log.png
HAYW
HAYW 10679 2sec RotD50.png
HAYW 10679 3sec RotD50.png
HAYW 10679 5sec RotD50.png
HAYW 10679 10sec RotD50.png
HAYW vert profile.png
HAYW 10679 2sec RotD50 log.png
HAYW 10679 3sec RotD50 log.png
HAYW 10679 5sec RotD50 log.png
HAYW 10679 10sec RotD50 log.png

High-frequency curves

Site 1 sec 0.5 sec 0.2 sec 0.1 sec Vertical profile
s3446
S3446 10676 1sec RotD50.png
S3446 10676 0.5sec RotD50.png
S3446 10676 0.2sec RotD50.png
S3446 10676 0.1sec RotD50.png
S3446 vert profile.png
s3240
S3240 10689 1sec RotD50.png
S3240 10689 0.5sec RotD50.png
S3240 10689 0.2sec RotD50.png
S3240 10689 0.1sec RotD50.png
S3240 vert profile.png
ALBY
ALBY 10694 1sec RotD50.png
ALBY 10694 0.5sec RotD50.png
ALBY 10694 0.2sec RotD50.png
ALBY 10694 0.1sec RotD50.png
ALBY vert profile.png
SJO
SJO 10695 1sec RotD50.png
SJO 10695 0.5sec RotD50.png
SJO 10695 0.2sec RotD50.png
SJO 10695 0.1sec RotD50.png
SJO vert profile.png
CFCS
CFCS 10693 1sec RotD50.png
CFCS 10693 0.5sec RotD50.png
CFCS 10693 0.2sec RotD50.png
CFCS 10693 0.1sec RotD50.png
CFCS vert profile.png
s3171
S3171 10688 1sec RotD50.png
S3171 10688 0.5sec RotD50.png
S3171 10688 0.2sec RotD50.png
S3171 10688 0.1sec RotD50.png
S3171 vert profile.png
CSUEB
CSUEB 10691 1sec RotD50.png
CSUEB 10691 0.5sec RotD50.png
CSUEB 10691 0.2sec RotD50.png
CSUEB 10691 0.1sec RotD50.png
CSUEB vert profile.png
CSU1
CSU1 10692 1sec RotD50.png
CSU1 10692 0.5sec RotD50.png
CSU1 10692 0.2sec RotD50.png
CSU1 10692 0.1sec RotD50.png
CSU1 vert profile.png
SFRH
SFRH 10690 1sec RotD50.png
SFRH 10690 0.5sec RotD50.png
SFRH 10690 0.2sec RotD50.png
SFRH 10690 0.1sec RotD50.png
SFRH vert profile.png
LVMR
LVMR 10696 1sec RotD50.png
LVMR 10696 0.5sec RotD50.png
LVMR 10696 0.2sec RotD50.png
LVMR 10696 0.1sec RotD50.png
LVMR vert profile.png
HAYW
HAYW 10697 1sec RotD50.png
HAYW 10697 0.5sec RotD50.png
HAYW 10697 0.2sec RotD50.png
HAYW 10697 0.1sec RotD50.png
HAYW vert profile.png

Results using velocity model RC2

Low-frequency curves

Site 2 sec 3 sec 5 sec 10 sec Vertical profile
s3240
S3240 10708 2sec RotD50.png
S3240 10708 3sec RotD50.png
S3240 10708 5sec RotD50.png
S3240 10708 10sec RotD50.png
S3240 RC2 vert profile.png
S3240 10708 2sec RotD50 log.png
S3240 10708 3sec RotD50 log.png
S3240 10708 5sec RotD50 log.png
S3240 10708 10sec RotD50 log.png
ALBY
ALBY 10709 2sec RotD50.png
ALBY 10709 3sec RotD50.png
ALBY 10709 5sec RotD50.png
ALBY 10709 10sec RotD50.png
ALBY RC2 vert profile.png
ALBY 10709 2sec RotD50 log.png
ALBY 10709 3sec RotD50 log.png
ALBY 10709 5sec RotD50 log.png
ALBY 10709 10sec RotD50 log.png
SJO
SJO 10710 2sec RotD50.png
SJO 10710 3sec RotD50.png
SJO 10710 5sec RotD50.png
SJO 10710 10sec RotD50.png
SJO RC2 vert profile.png
SJO 10710 2sec RotD50 log.png
SJO 10710 3sec RotD50 log.png
SJO 10710 5sec RotD50 log.png
SJO 10710 10sec RotD50 log.png
CFCS
CFCS 10711 2sec RotD50.png
CFCS 10711 3sec RotD50.png
CFCS 10711 5sec RotD50.png
CFCS 10711 10sec RotD50.png
CFCS RC2 vert profile.png
CFCS 10711 2sec RotD50 log.png
CFCS 10711 3sec RotD50 log.png
CFCS 10711 5sec RotD50 log.png
CFCS 10711 10sec RotD50 log.png
s3171
S3171 10712 2sec RotD50.png
S3171 10712 3sec RotD50.png
S3171 10712 5sec RotD50.png
S3171 10712 10sec RotD50.png
S3171 RC2 vert profile.png
S3171 10712 2sec RotD50 log.png
S3171 10712 3sec RotD50 log.png
S3171 10712 5sec RotD50 log.png
S3171 10712 10sec RotD50 log.png
CSUEB
CSUEB 10713 2sec RotD50.png
CSUEB 10713 3sec RotD50.png
CSUEB 10713 5sec RotD50.png
CSUEB 10713 10sec RotD50.png
CSUEB RC2 vert profile.png
CSUEB 10713 2sec RotD50 log.png
CSUEB 10713 3sec RotD50 log.png
CSUEB 10713 5sec RotD50 log.png
CSUEB 10713 10sec RotD50 log.png
CSU1
CSU1 10714 2sec RotD50.png
CSU1 10714 3sec RotD50.png
CSU1 10714 5sec RotD50.png
CSU1 10714 10sec RotD50.png
CSU1 RC2 vert profile.png
CSU1 10714 2sec RotD50 log.png
CSU1 10714 3sec RotD50 log.png
CSU1 10714 5sec RotD50 log.png
CSU1 10714 10sec RotD50 log.png
SFRH
SFRH 10715 2sec RotD50.png
SFRH 10715 3sec RotD50.png
SFRH 10715 5sec RotD50.png
SFRH 10715 10sec RotD50.png
SFRH RC2 vert profile.png
SFRH 10715 2sec RotD50 log.png
SFRH 10715 3sec RotD50 log.png
SFRH 10715 5sec RotD50 log.png
SFRH 10715 10sec RotD50 log.png
LVMR
LVMR 10715 2sec RotD50.png
LVMR 10715 3sec RotD50.png
LVMR 10715 5sec RotD50.png
LVMR 10715 10sec RotD50.png
LVMR RC2 vert profile.png
LVMR 10715 2sec RotD50 log.png
LVMR 10715 3sec RotD50 log.png
LVMR 10715 5sec RotD50 log.png
LVMR 10715 10sec RotD50 log.png
HAYW
HAYW 10717 2sec RotD50.png
HAYW 10717 3sec RotD50.png
HAYW 10717 5sec RotD50.png
HAYW 10717 10sec RotD50.png
HAYW RC2 vert profile.png
HAYW 10717 2sec RotD50 log.png
HAYW 10717 3sec RotD50 log.png
HAYW 10717 5sec RotD50 log.png
HAYW 10717 10sec RotD50 log.png

Comparisons with Study 18.8

Study 18.8 curves are in red, and new curves are in black.

Site 2 sec 3 sec 5 sec 10 sec Vertical profile
s3240
S3240 Aug9 248 v 188 2sec RotD50.png
S3240 Aug9 248 v 188 3sec RotD50.png
S3240 Aug9 248 v 188 5sec RotD50.png
S3240 Aug9 248 v 188 10sec RotD50.png
S3240 RC2 vert profile.png
ALBY
ALBY Aug9 248 v 188 2sec RotD50.png
ALBY Aug9 248 v 188 3sec RotD50.png
ALBY Aug9 248 v 188 5sec RotD50.png
ALBY Aug9 248 v 188 10sec RotD50.png
ALBY RC2 vert profile.png
SJO
SJO Aug9 248 v 188 2sec RotD50.png
SJO Aug9 248 v 188 3sec RotD50.png
SJO Aug9 248 v 188 5sec RotD50.png
SJO Aug9 248 v 188 10sec RotD50.png
SJO RC2 vert profile.png
CFCS
CFCS Aug9 248 v 188 2sec RotD50.png
CFCS Aug9 248 v 188 3sec RotD50.png
CFCS Aug9 248 v 188 5sec RotD50.png
CFCS Aug9 248 v 188 10sec RotD50.png
CFCS RC2 vert profile.png
s3171
S3171 Aug9 248 v 188 2sec RotD50.png
S3171 Aug9 248 v 188 3sec RotD50.png
S3171 Aug9 248 v 188 5sec RotD50.png
S3171 Aug9 248 v 188 10sec RotD50.png
S3171 RC2 vert profile.png
CSUEB
CSUEB Aug9 248 v 188 2sec RotD50.png
CSUEB Aug9 248 v 188 3sec RotD50.png
CSUEB Aug9 248 v 188 5sec RotD50.png
CSUEB Aug9 248 v 188 10sec RotD50.png
CSUEB RC2 vert profile.png
CSU1
CSU1 Aug9 248 v 188 2sec RotD50.png
CSU1 Aug9 248 v 188 3sec RotD50.png
CSU1 Aug9 248 v 188 5sec RotD50.png
CSU1 Aug9 248 v 188 10sec RotD50.png
CSU1 RC2 vert profile.png
SFRH
SFRH Aug9 248 v 188 2sec RotD50.png
SFRH Aug9 248 v 188 3sec RotD50.png
SFRH Aug9 248 v 188 5sec RotD50.png
SFRH Aug9 248 v 188 10sec RotD50.png
SFRH RC2 vert profile.png
LVMR
LVMR Aug9 248 v 188 2sec RotD50.png
LVMR Aug9 248 v 188 3sec RotD50.png
LVMR Aug9 248 v 188 5sec RotD50.png
LVMR Aug9 248 v 188 10sec RotD50.png
LVMR RC2 vert profile.png
HAYW
HAYW Aug9 248 v 188 2sec RotD50.png
HAYW Aug9 248 v 188 3sec RotD50.png
HAYW Aug9 248 v 188 5sec RotD50.png
HAYW Aug9 248 v 188 10sec RotD50.png
HAYW RC2 vert profile.png

High-frequency curves

Site 1 sec 0.5 sec 0.2 sec 0.1 sec Vertical profile
s3240
S3240 10724 1sec RotD50.png
S3240 10724 0.5sec RotD50.png
S3240 10724 0.2sec RotD50.png
S3240 10724 0.1sec RotD50.png
S3240 vert profile.png
ALBY
ALBY 10725 1sec RotD50.png
ALBY 10725 0.5sec RotD50.png
ALBY 10725 0.2sec RotD50.png
ALBY 10725 0.1sec RotD50.png
ALBY vert profile.png
SJO
SJO 10723 1sec RotD50.png
SJO 10723 0.5sec RotD50.png
SJO 10723 0.2sec RotD50.png
SJO 10723 0.1sec RotD50.png
SJO vert profile.png
CFCS
CFCS 10718 1sec RotD50.png
CFCS 10718 0.5sec RotD50.png
CFCS 10718 0.2sec RotD50.png
CFCS 10718 0.1sec RotD50.png
CFCS vert profile.png
s3171
S3171 10719 1sec RotD50.png
S3171 10719 0.5sec RotD50.png
S3171 10719 0.2sec RotD50.png
S3171 10719 0.1sec RotD50.png
S3171 vert profile.png
CSUEB
CSUEB 10720 1sec RotD50.png
CSUEB 10720 0.5sec RotD50.png
CSUEB 10720 0.2sec RotD50.png
CSUEB 10720 0.1sec RotD50.png
CSUEB vert profile.png
CSU1
CSU1 10721 1sec RotD50.png
CSU1 10721 0.5sec RotD50.png
CSU1 10721 0.2sec RotD50.png
CSU1 10721 0.1sec RotD50.png
CSU1 vert profile.png
SFRH
SFRH 10722 1sec RotD50.png
SFRH 10722 0.5sec RotD50.png
SFRH 10722 0.2sec RotD50.png
SFRH 10722 0.1sec RotD50.png
SFRH vert profile.png
LVMR
LVMR 10726 1sec RotD50.png
LVMR 10726 0.5sec RotD50.png
LVMR 10726 0.2sec RotD50.png
LVMR 10726 0.1sec RotD50.png
LVMR vert profile.png
HAYW
HAYW 10727 1sec RotD50.png
HAYW 10727 0.5sec RotD50.png
HAYW 10727 0.2sec RotD50.png
HAYW 10727 0.1sec RotD50.png
HAYW vert profile.png

Updates and Enhancements

  • Used smaller study region than in Study 18.8.
  • Removed southern San Andreas events, and created a new ERF.

Output Data Products

File-based data products

We plan to produce the following data products, which will be stored at CARC:

Deterministic

  • Seismograms: 3-component seismograms, 10000 timesteps (400 sec, dt=0.04s) each.
  • PSA: We are removing geometric mean PSA calculations from this study.
  • RotD: PGV, and RotD50, RotD100, and the RotD100 azimuth at 27 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1)
  • Vertical response spectra at 27 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1).
  • Durations: for X and Y components, energy integral, Arias intensity, cumulative absolute velocity (CAV), and for both velocity and acceleration, 5-75%, 5-95%, and 20-80%. Also, period-dependent acceleration 5-75%, 5-95%, and 20-80% for 27 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1).

Broadband

  • Seismograms: 3-component seismograms, 40000 timesteps (400 sec, dt=0.01s) each.
  • PSA: We are removing geometric mean PSA calculations from this study.
  • RotD: PGA, PGV, and RotD50, RotD100, and the the RotD100 azimuth at 68 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1, 0.85, 0.75, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.17, 0.15, 0.13, 0.12, 0.11, 0.1, 0.085, 0.075, 0.065, 0.06, 0.055, 0.05, 0.045, 0.04, 0.035, 0.032, 0.029, 0.025, 0.022, 0.02, 0.017, 0.015, 0.013, 0.012, 0.011, 0.01)
  • Vertical response spectra at 68 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1).
  • Durations: for X and Y components, energy integral, Arias intensity, cumulative absolute velocity (CAV), and for both velocity and acceleration, 5-75%, 5-95%, and 20-80%. Also, period-dependent acceleration 5-75%, 5-95%, and 20-80% for 68 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1, 0.85, 0.75, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.17, 0.15, 0.13, 0.12, 0.11, 0.1, 0.085, 0.075, 0.065, 0.06, 0.055, 0.05, 0.045, 0.04, 0.035, 0.032, 0.029, 0.025, 0.022, 0.02, 0.017, 0.015, 0.013, 0.012, 0.011, 0.01)

Database data products

We plan to store the following data products in the database on moment-carc:

Deterministic

  • RotD50 for 6 periods (10, 7.5, 5, 4, 3, 2). Note that we are NOT storing RotD100.
  • Duration: acceleration 5-75% and 5-95% for both X and Y

Broadband

  • RotD50 for PGA, PGV, and 19 periods (10, 7.5, 5, 4, 3, 2, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.075, 0.05, 0.04, 0.03, 0.02, 0.01). Note that we are NOT storing RotD100.

Hazard products

For each site, we will produce hazard curves from the deterministic results at 10, 5, 3, and 2 seconds, and from the broadband results at 10, 5, 3, 2, 1, 0.5, 0.2, and 0.1 seconds.

When the study is complete, we will produce maps from the deterministic results at 10, 5, 3, and 2 seconds, and from the broadband results at 10, 5, 3, 2, 1, 0.5, 0.2, and 0.1 seconds.

Data products after the study

After the study completes, we plan to compute Fourier spectra for all 3 components:

  • For deterministic, at 27 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1).
  • For broadband at 68 periods (20, 17, 15, 13, 12, 10, 8.5, 7.5, 6.5, 6, 5.5, 5, 4.4, 4, 3.5, 3, 2.8, 2.6, 2.4, 2.2, 2, 1.7, 1.5, 1.3, 1.2, 1.1, 1, 0.85, 0.75, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.17, 0.15, 0.13, 0.12, 0.11, 0.1, 0.085, 0.075, 0.065, 0.06, 0.055, 0.05, 0.045, 0.04, 0.035, 0.032, 0.029, 0.025, 0.022, 0.02, 0.017, 0.015, 0.013, 0.012, 0.011, 0.01)

Computational and Data Estimates

Computational Estimates

We based these estimates on the test sites.

SGT calculation
UCVM runtime UCVM nodes SGT runtime (3 components) SGT nodes Other SGT workflow jobs SGT Total
Average of 11 test sites 761 sec 96 7134 sec 100 7200 node-sec 220 node-hrs

220 node-hrs/site x 315 sites + 10% overrun = 76,230 node-hours for SGT workflows on Frontier.

PP calculation
DirectSynth runtime DirectSynth nodes Additional runtime for period-dependent calculation PP Total
75th percentile of 10 test sites 13914 sec 60 61938 core-sec 232.2 node-hrs


BB calculation
BB runtime BB nodes Additional runtime for period-dependent calculation BB Total
75th percentile of 10 test sites 8019 sec 40 61938 core-sec 89.4 node-hrs

(232.2+89.7) node-hrs/site x 315 sites + 10% overrun = 111,500 node-hours for PP and BB calculations on Frontera.

Data Estimates

We use the 75th percentile estimate of 206,500 rupture variations.

We are generating 3-component SGTs and 3-component seismograms, with 10k timesteps (400 sec) for LF and 40k timesteps (400 sec) for BB.

Data estimates
Velocity mesh SGTs size Temp data LF Output data BB Output data Total output data
Per site, derived from 10 site average (GB) 359 1131 1490 23.7 93.6 117.3
Total for 335 sites (TB) 110 348 458 7.3 28.8 36.1

CARC

We estimate 117.3 GB/site x 315 sites = 36.1 TB in output data, which will be transferred back to CARC. We currently have 29 TB free.

shock-carc

We estimate (3 MB SGT + 32 MB PP + 219 MB BB logs + 3 MB output products) x 315 sites = 79 GB in workflow log space on /home/shock. This drive has approximately 1.2 TB free.

moment-carc database

The PeakAmplitudes table uses approximately 183 bytes for data + 179 bytes for index = 363 bytes per entry.

362 bytes/entry * 35 entries/event (10 det + 25 stoch) * 206,500 events/site * 315 sites = 768 GB. The drive on moment-carc with the mysql database has 6.6 TB free.

Lessons Learned

Stress Test

For the stress test, we will run the first 20 sites and check for scientific and technical issues.

Usage before the stress test:

  • On Frontier, 587,856 of 700,000 node-hours for project GEO156. callag has used 22,166 node-hours.
  • On Frontera, 316,715 of 600,000 node-hours for project EAR20006. scottcal has used 11,274 node-hours.

The stress test began on 8/27/24 at 11:25:23 PDT.

To help us finish the stress test before the SCEC AM, TACC granted us a Frontera reservation for 200 nodes for 8 days, beginning on 8/28/24 at 8 am PDT. We didn't realized we needed to specify the --reservation tag, so we began utilizing it around 9 am PDT.

We gave the reservation back in the morning of 8/30. After the stress test, callag had used 32,660 node-hours on Frontier and scottcal used 18,493 node-hours on Frontera.

Stress test computational cost:

  • SGTs: 10494/20 sites = 524.7 node-hours per site, about 2.4x what we estimated. This is mostly due to having used meshes with a -55 degree angle, resulting in larger meshes requiring more computation time.
  • PP and BB: 370.0 node-hours per site, about 15% more than we estimated.

Changes from stress test

Based on the stress test, we made the following changes:

  • Reduced ramp-up time for DirectSynth worker processes.
  • Fixed issue with PGV writing to files in the BB codes.
  • Changed mesh angle from -55 to -36 degrees.
  • Changed smoothing zone from 10 km on either side of the boundary to 20 km.
  • Fixed issue with vertical response and period duration files not automatically transferred.
  • Discovered issue with accessing moment-carc through the USC VPN - confirmed that neither Xiaofeng nor Kevin can access it.

Stress test results

Below are hazard curves for the 20 test sites in the stress test.

Study 24 8 stress test sites.png

A KML file with the stress test sites is available here.

Low-frequency

These curves (in black) include comparisons with Study 18.8 (in red)

Site 2 sec 3 sec 5 sec 10 sec
s3240
S3240 r10730 248 v 188 2sec RotD50.png
S3240 r10730 248 v 188 3sec RotD50.png
S3240 r10730 248 v 188 5sec RotD50.png
S3240 r10730 248 v 188 10sec RotD50.png
ALBY
ALBY r10731 248 v 188 2sec RotD50.png
ALBY r10731 248 v 188 3sec RotD50.png
ALBY r10731 248 v 188 5sec RotD50.png
ALBY r10731 248 v 188 10sec RotD50.png
SJO
SJO r10732 248 v 188 2sec RotD50.png
SJO r10732 248 v 188 3sec RotD50.png
SJO r10732 248 v 188 5sec RotD50.png
SJO r10732 248 v 188 10sec RotD50.png
CFCS
CFCS r10733 248 v 188 2sec RotD50.png
CFCS r10733 248 v 188 3sec RotD50.png
CFCS r10733 248 v 188 5sec RotD50.png
CFCS r10733 248 v 188 10sec RotD50.png
s3171
S3171 r10734 248 v 188 2sec RotD50.png
S3171 r10734 248 v 188 3sec RotD50.png
S3171 r10734 248 v 188 5sec RotD50.png
S3171 r10734 248 v 188 10sec RotD50.png
CSUEB
CSUEB r10735 248 v 188 2sec RotD50.png
CSUEB r10735 248 v 188 3sec RotD50.png
CSUEB r10735 248 v 188 5sec RotD50.png
CSUEB r10735 248 v 188 10sec RotD50.png
CSU1
CSU1 r10736 248 v 188 2sec RotD50.png
CSU1 r10736 248 v 188 3sec RotD50.png
CSU1 r10736 248 v 188 5sec RotD50.png
CSU1 r10736 248 v 188 10sec RotD50.png
SFRH
SFRH r10737 248 v 188 2sec RotD50.png
SFRH r10737 248 v 188 3sec RotD50.png
SFRH r10737 248 v 188 5sec RotD50.png
SFRH r10737 248 v 188 10sec RotD50.png
LVMR
LVMR r10738 248 v 188 2sec RotD50.png
LVMR r10738 248 v 188 3sec RotD50.png
LVMR r10738 248 v 188 5sec RotD50.png
LVMR r10738 248 v 188 10sec RotD50.png
HAYW
HAYW r10739 248 v 188 2sec RotD50.png
HAYW r10739 248 v 188 3sec RotD50.png
HAYW r10739 248 v 188 5sec RotD50.png
HAYW r10739 248 v 188 10sec RotD50.png
s3446
S3446 r10740 248 v 188 2sec RotD50.png
S3446 r10740 248 v 188 3sec RotD50.png
S3446 r10740 248 v 188 5sec RotD50.png
S3446 r10740 248 v 188 10sec RotD50.png
NAPA
NAPA r10741 248 v 188 2sec RotD50.png
NAPA r10741 248 v 188 3sec RotD50.png
NAPA r10741 248 v 188 5sec RotD50.png
NAPA r10741 248 v 188 10sec RotD50.png
SRSA
SRSA r10742 248 v 188 2sec RotD50.png
SRSA r10742 248 v 188 3sec RotD50.png
SRSA r10742 248 v 188 5sec RotD50.png
SRSA r10742 248 v 188 10sec RotD50.png
MSRA
MSRA r10743 248 v 188 2sec RotD50.png
MSRA r10743 248 v 188 3sec RotD50.png
MSRA r10743 248 v 188 5sec RotD50.png
MSRA r10743 248 v 188 10sec RotD50.png
PTRY
PTRY r10744 248 v 188 2sec RotD50.png
PTRY r10744 248 v 188 3sec RotD50.png
PTRY r10744 248 v 188 5sec RotD50.png
PTRY r10744 248 v 188 10sec RotD50.png
DALY
DALY r10745 248 v 188 2sec RotD50.png
DALY r10745 248 v 188 3sec RotD50.png
DALY r10745 248 v 188 5sec RotD50.png
DALY r10745 248 v 188 10sec RotD50.png
SSOL
SSOL r10746 248 v 188 2sec RotD50.png
SSOL r10746 248 v 188 3sec RotD50.png
SSOL r10746 248 v 188 5sec RotD50.png
SSOL r10746 248 v 188 10sec RotD50.png
LICK
LICK r10747 248 v 188 2sec RotD50.png
LICK r10747 248 v 188 3sec RotD50.png
LICK r10747 248 v 188 5sec RotD50.png
LICK r10747 248 v 188 10sec RotD50.png
SSFO
SSFO r10748 248 v 188 2sec RotD50.png
SSFO r10748 248 v 188 3sec RotD50.png
SSFO r10748 248 v 188 5sec RotD50.png
SSFO r10748 248 v 188 10sec RotD50.png
BLMT
BLMT r10749 248 v 188 2sec RotD50.png
BLMT r10749 248 v 188 3sec RotD50.png
BLMT r10749 248 v 188 5sec RotD50.png
BLMT r10749 248 v 188 10sec RotD50.png

Sites with notable differences

We identified 3 sites with notable differences between Study 24.8 and Study 18.8:

  • LVMR is higher at 10 sec
  • CFCS is higher 2, 3, 5 sec
  • s3171 is lower at 3, 5, 10 sec

We believe the difference in LVMR is due to the expanded basin added in SFCVM v21.1, and s3171 can be explained by the change in profile as well:

Site Profile, SFCVM v21.1 Profile, Cencal model used in Study 18.8
LVMR
LVMR RC2 vert profile.png
LVMR cencal vert profile.png
s3171
S3171 RC2 vert profile.png
S3171 cencal vert profile.png


A scatterplot comparing the average 2 sec RotD50 value for each rupture shows that the Study 24.8 results are consistently higher than the 18.8 results for CFCS:

CFCS scatterplot.png

We extracted vertical slices for the top from Cencal (floor = 500 m/s) and the Study 24.8 model (taper, floor = 400 m/s) for the top 5000 m along an east-west line running through CFCS.

Vertical slice, Study 24.8 Vertical slice, Cencal
CFCS RC2 vert slice.png
CFCS cencal vert slice.png

Corrected Study 18.8 comparisons

In an attempt to replicate the Study 18.8 results, we discovered that the Study 18.8 velocity models were tiled in a different order than for Study 24.8: CCA-06, then CenCal, then CVM-S4.26.M01, as described here. Several of the stress test sites fall within the 20 km smoothing zone surrounding the Study 18.8 CCA-06/Cencal interface (interface in blue, 20km zone in white):

Study 18 8 20km smoothing region stress test sites.png

We compared the velocity profiles of Study 24.8 and the correct Study 18.8 configuration for the 5 stress test sites. For CFCS, this explains the sharp increase in hazard. The Study 18.8 profile is in blue, and the Study 24.8 profile is in orange.

Site Vs overlay, top 700m 2 sec curve 3 sec curve 5 sec curve 10 sec curve
CFCS
CFCS 248 188 overlay.png
CFCS r10733 248 v 188 2sec RotD50.png
CFCS r10733 248 v 188 3sec RotD50.png
CFCS r10733 248 v 188 5sec RotD50.png
CFCS r10733 248 v 188 10sec RotD50.png
SJO
SJO 248 188 overlay.png
SJO r10732 248 v 188 2sec RotD50.png
SJO r10732 248 v 188 3sec RotD50.png
SJO r10732 248 v 188 5sec RotD50.png
SJO r10732 248 v 188 10sec RotD50.png
s3446
S3446 248 188 overlay.png
S3446 r10740 248 v 188 2sec RotD50.png
S3446 r10740 248 v 188 3sec RotD50.png
S3446 r10740 248 v 188 5sec RotD50.png
S3446 r10740 248 v 188 10sec RotD50.png
BLMT
BLMT 248 188 overlay.png
BLMT r10749 248 v 188 2sec RotD50.png
BLMT r10749 248 v 188 3sec RotD50.png
BLMT r10749 248 v 188 5sec RotD50.png
BLMT r10749 248 v 188 10sec RotD50.png
LICK
LICK 248 188 overlay.png
LICK r10747 248 v 188 2sec RotD50.png
LICK r10747 248 v 188 3sec RotD50.png
LICK r10747 248 v 188 5sec RotD50.png
LICK r10747 248 v 188 10sec RotD50.png

Impact of rotation angle and smoothing zone

Based on the below analysis, we will rerun the stress test sites with the intended angle of -36 degrees and a 20 km smoothing zone so that all Study 24.8 results will be consistent.

We discovered that the stress test sites were run with a volume rotation angle of -55 degrees and a smoothing zone width of 10 km on either side of the interface. This is different from our intended rotation angle of -36 degrees and smoothing zone width of 20 km. To quantify the impact of this, we ran CFCS with the updated values. Comparisons are below. The black curves are the stress test run, the blue curves are the corrected run.

2 sec 3 sec 5 sec 10 sec
CFCS 10733 v 10771 2sec curve.png
CFCS 10733 v 10771 3sec curve.png
CFCS 10733 v 10771 5sec curve.png
CFCS 10733 v 10771 10sec curve.png
CFCS 10733 v 10771 2sec scatter.png
CFCS 10733 v 10771 3sec scatter.png
CFCS 10733 v 10771 5sec scatter.png
CFCS 10733 v 10771 10sec scatter.png

Events During Study

The main study began on 9/24/24 at 11:49:59 PDT.

We began with a maximum of 5 workflows on Frontier and 20 on Frontera. Later on 9/24 we increased the number of Frontier workflows to 15.

On 9/30, moment-carc wasn't passed to the Check Duration job for finishing PP workflows. I updated the dax generator to correctly pass through the desired database for this job.

On 9/30, I ran out of /home quota on Frontera. This was an issue because some of the rvGAHP-related logs are written here, and it resulted in "Failed to start transfer GAHP" errors. I cleaned up some space on /home and released the jobs.

On 9/30, the merge_pmc jobs were held because they still included the stress test reservation on Frontera. I removed the reservation string and released the jobs.

On 10/1, I found that the cronjob on Frontier to monitor job usage was removed from the crontab, so I added it back.

On 10/2, I turned off stochastic calculations on Frontera while we investigated the unexpected BB results from the stress test.

On 10/10, the work2 filesystem on Frontera, where the executables and rupture files are hosted, had a problem, causing all the Frontera jobs to be held. Additionally, login4, the host which connects to shock, was unavailable. When login4 returned we restarted the rvGAHP process.

On 10/16, the scottcal account was added to the CyberShake DesignSafe project. This meant that scottcal is now part of 3 allocations, leading to a Slurm error when jobs were submitted without specifying an account, meaning Condor jobs were held. I added the EAR20006 account to all Frontera jobs, and had to manually add it for jobs which were already planned.

On 10/16, I realized that DirectSynth jobs were requesting a wallclock time of 10 hours, but these jobs are usually only taking a bit more than 4. I changed the requested job length to 5 hours.

On 10/17, I discovered that the PP Error jobs were because the corresponding SGT workflow had finished its Update and Handoff jobs, but then the stage-out of the SGTs to Frontera failed because of Globus consents. The registration job is dependent on stage-out, so it didn't run either. Then, when the PP workflow tries to plan, it can't find a copy of the SGT files on Frontera and aborts. I couldn't use the standard CyberShake scripts to restart these workflows, since in the database they were already recorded as SGT Generated, so instead I just reran the pegasus-run commands in the log-plan* files.

On 10/18, I got an email from TACC staff that the jobs are causing too much load on the scratch filesystem, and a request to reduce the number of simultaneous jobs to 4. I reduced the number of Frontera slots to 4 in the workflow auto-submission tool, and am following up to learn the specifics of the problem and if there's a way to fix it.

SGT calculations on Frontier finished on 10/18/24 at 12:59:43 PDT.

On 10/21, the broadband transfers to Corral for Study 22.12 resulted in going over quota on CARC scratch1 again, interfering with the workflows for this study. I cleaned up scratch1 and fixed the issue.

On 10/28-30, the work2 filesystem and scheduler on Frontera had a number of issues, requiring restarts of the rvGAHP daemon and some work to recover the job state.

Renewal of Globus consents

We will track when we renew the Globus consents.

10/6

10/9

10/13

10/17

10/24

10/29

11/5

Restarts of the rvgahp daemons

We will track when we restart the rvgahp daemons on login10@frontier and login4@frontera.

10/9 on Frontera

10/10 on Frontera (node crashed)

10/29 on Frontera (filesystem issues)

10/30 on Frontera (continuing filesystem issues)

11/7 on Frontera

Performance Metrics

At the start of the main study, project geo156 on Frontier has used 609101 node-hours (of 700,000). User callag has used 33398 node-hours. Project EAR20006 has used 12925.147 node-hours (of 676,000). User scottcal has used 503.796 node-hours.

At the end of the main study, project geo156 had used 671,656 node-hours. User callag has used 88881.2 node-hours. project EAR20006 had 511480 node-hours remaining (out of 676,000). User scottcal used 125411.21 node-hours.

In total, the study used 55483 node-hours on Frontier and 124907 node-hours on Frontera.


Our high-water marks were 4130 nodes on Frontier (44%) and 1029 nodes on Frontera (12%). Neither used a reservation or priority bump.

Pegasus managed about 1 PB of data.

We staged about 9 million output files totaling 36 TB back to long-term storage at USC CARC.

We ran 945 top-level workflows, with an average of 15 running at a time.

We ran approximately 27,720 jobs. Of these, 7245 were remote, 8190 were local, 5985 were directory creation, 5355 were staging, and 945 were registration.

126,818,608 three-component seismograms (half LF, half BB), 11.5 billion low-frequency IMs, and 22.8 billion broadband IMs were calculated.

Production Checklist

  • Run test workflow against moment-carc.
  • Investigate velocity profile differences with Mei's plots (s3171 and HAYW)
  • Wrap period-dependent duration code and test in PP.
  • Wrap period-dependent duration code and test in BB.
  • Integrate period-dependent duration code into workflows.
  • Update data and compute estimates.
  • Determine where to copy output data.
  • Modify workflows to remove double-staging of SGTs to Frontera.
  • Schedule and hold readiness reviews with TACC and OLCF.
  • Modify workflows to only insert RotD50, not RotD100.
  • Science readiness review
  • Technical readiness review
  • Verify that vertical component response is being calculated correctly.
  • Set up cronjobs to monitor usage.
  • Solve issue with putting velocity parameters into the database from Frontier.
  • Tag code in github repository

Presentations, Posters, and Papers

References