CyberShake Study 18.8

From SCECpedia
Jump to navigationJump to search

CyberShake 18.3 is a computational study to perform CyberShake in a new region, the extended Bay Area. We plan to use a combination of 3D models (USGS Bay Area detailed and regional, CVM-S4.26.M01, CCA-06) with a minimum Vs of 500 m/s and a frequency of 1 Hz. We will use the GPU implementation of AWP-ODC-SGT, the Graves & Pitarka (2014) rupture variations with 200m spacing and uniform hypocenters, and the UCERF2 ERF. The SGT and post-processing calculations will both be run on both NCSA Blue Waters and OLCF Titan.

Status

This study is under development. We hope to begin in May 2018.

Science Goals

The science goals for this study are:

  • Expand CyberShake to the Bay Area.
  • Calculate CyberShake results with the USGS Bay Area velocity model as the primary model.
  • Calculate CyberShake results at selection locations with Vs min = 250 m/s.

Technical Goals

  • Perform the largest CyberShake study to date.

Sites

Map showing Study 18.3 sites (cities=yellow, CISN stations=orange, missions=blue, 10 km grid=purple, 5 km grid=green, PG&E locations=pink. The Bay Area box is in orange and the Study 17.3 box is in magenta.

The Study 18.3 box is 180 x 390 km, with the long edge rotated 27 degrees counter-clockwise from vertical. The corners are defined to be:

South: (-121.51,35.52)
West: (-123.48,38.66)
North: (-121.62,39.39)
East: (-119.71,36.22)

We are planning to run 869 sites, 838 of which are new, as part of this study.

These sites include:

  • 77 cities (74 new)
  • 10 new missions
  • 139 CISN stations (136 new)
  • 46 new sites of interest to PG&E
  • 597 sites along a 10 km grid (571 new)

Of these sites, 32 overlap with the Study 17.3 region for verification.

A KML file with all these sites is available with names or without names.

Projection Analysis

As our simulation region gets larger, we needed to review the impact of the projection we are using for the simulations. An analysis of the impact of various projections by R. Graves is summarized in this posting:

Velocity Models

For Study 18.5, we have decided to construct the velocity mesh by querying models in the following order:

  1. USGS Bay Area model
  2. CCA-06 with the Ely GTL applied
  3. CVM-S4.26.M01 (which includes a 1D background model).

A KML file showing the model regions is available here.

We will use a minimum Vs of 500 m/s. Smoothing will be applied 20 km on either side of any velocity model interface.

A thorough investigation was done to determine these parameters; a more detailed discussion is available at Study 18.5 Velocity Model Comparisons.

Verification

Blue Waters/Titan Verification

Overlapping sites

Background Seismicity

Statewide maps showing the impact of background seismicity are available here: CyberShake Background Seismicity

Performance Enhancements (over Study 17.3)

Responses to Study 17.3 Lessons Learned

  • Include plots of velocity models as part of readiness review when moving to new regions.

We have constructed many plots, and will include some in the science readiness review.

  • Formalize process of creating impulse. Consider creating it as part of the workflow based on nt and dt.
  • Many jobs were not picked up by the reservation, and as a result reservation nodes were idle. Work harder to make sure reservation is kept busy.
  • Forgot to turn on monitord during workflow, so had to deal with statistics after the workflow was done. Since we're running far fewer jobs, it's fine to run monitord population during the workflow.

We set pegasus.monitord.events = true in all properties files.

  • In Study 17.3b, 2 of the runs (5765 and 5743) had a problem with their output, which left 'holes' of lower hazard on the 1D map. Looking closely, we discovered that the SGT X component of run 5765 was about 30 GB smaller than it should have been, likely causing issues when the seismograms were synthesized. We no longer had the SGTs from 5743, so we couldn't verify that the same problem happened here. Moving forward, include checks on SGT file size as part of the nan check.

We added a file size check as part of the NaN check.

Output Data Products

Below is a list of what data products we intend to compute and what we plan to put in the database.

Computational and Data Estimates

Computational Estimates

In producing the computational estimates, we selected the four N/S/E/W extreme sites in the box which 1)within the 200 km cutoff for southern SAF events (381 sites) and 2)were outside the cutoff (488 sites). We produced inside and outside averages and scaled these by the number of inside and outside sites.

We also modified the box to be at an angle of 30 degrees counterclockwise of vertical, which makes the boxes about 15% smaller than with the previously used angle of 55 degrees.

We scaled our results based on the Study 17.3 performance of site s975, a site also in Study 18.3, and the Study 15.4 performance of DBCN, which used a very large volume and 100m spacing.

SGT calculation
# Grid points #VMesh gen nodes Mesh gen runtime # GPUs SGT job runtime Titan SUs BW node-hrs
Inside cutoff, per site 23.1 billion 192 0.85 hrs 800 1.35 hrs 69.7k 2240
Outside cutoff, per site 10.2 billion 192 0.37 hrs 800 0.60 hrs 30.8k 990
Total 41.6M 1.34M

For the post-processing, we quantified the amount of work by determining the number of individual rupture points to process (summing, over all ruptures, the number of rupture variations for that rupture times the number of rupture surface points) and multiplying that by the number of timesteps. We then scaled based on performance of s975 from Study 17.3, and DBCN in Study 15.4.

Below we list the estimates for Blue Waters or Titan.

PP calculation
#Points to process #Nodes (BW) BW runtime BW node-hrs #Nodes (Titan) Titan runtime Titan SUs
Inside cutoff, per site 5.96 billion 120 9.32 hrs 1120 240 10.3 hrs 74.2k
Outside cutoff, per site 2.29 billion 120 3.57 hrs 430 240 3.95 hrs 28.5k
Total 635K 42.2M

Our computational plan is to split the SGT calculations 50% BW/50% Titan, and split the PP 75% BW, 25% Titan. With a 20% margin, this would require 37.6M SUs on Titan, and 1.37M node-hrs on Blue Waters.

Currently we have 91.7M SUs available on Titan (expires 12/31/18), and 8.14M node-hrs on Blue Waters (expires 8/31/18). Based on the 2016 PRAC (spread out over 2 years), we budgeted approximately 6.2M node-hours for CyberShake on Blue Waters this year, of which we have used 0.01M.

Data Estimates

SGT size estimates are scaled based on the number of points to process.

Data estimates
#Grid points Velocity mesh SGTs size Temp data Output data
Inside cutoff, per site 23.1 billion 271 GB 410 GB 1090 GB 19.1 GB
Outside cutoff, per site 10.2 billion 120 GB 133 GB 385 GB 9.3 GB
Total 158 TB 216 TB 589 TB 11.6 TB

If we plan on all the SGTs on Titan and split the PP 25% Titan, 75% Blue Waters, we will need:

Titan: 589 TB temp files + 3 TB output files = 592 TB

Blue Waters: 162 TB SGTs + 9 TB output files = 171 TB

SCEC storage: 1 TB workflow logs + 11.6 TB output data files = 12.6 TB(45 TB free)

Database usage: (4 rows PSA [@ 2, 3, 5, 10 sec] + 12 rows RotD [RotD100 and RotD50 @ 2, 3, 4, 5, 7.5, 10 sec])/rupture variation x 225K rupture variations/site x 869 sites = 3.1 billion rows x 125 bytes/row = 364 GB (2.0 TB free on moment.usc.edu disk)


Production Checklist

  • Install UCVM 18.5.0 on Titan
  • Compute test hazard curves for 4 sites - on both systems for 2 of them.
  • Compute test curves for 2 overlapping sites.
  • Integrate Vs30 calculation and database population into workflow
  • Create Vs min=250 m/s plots.
  • Spec Vsmin=250 runs
  • Update workflows to use Globus Online for file transfers.
  • Modify resource estimates based on test curves.
  • Create XML file describing study for web monitoring tool.
  • Make decision regarding sites with 1D model.
  • Activate Blue Waters and Titan quota cronjobs.
  • Activate Blue Waters and Titan usage cronjobs.
  • Improve parallelism/scalability of smoothing code.
  • Tag code in repository
  • Calculate background seismicity impact for most-likely-to-be-impacted sites.
  • Verify that Titan and Blue Waters codebases are in sync with each other and the repo.
  • Prepare pending file
  • Get usage stats from Titan and Blue Waters before beginning study.
  • Hold science and technical readiness reviews.
  • Calls with Blue Waters and Titan staff
  • Switch to more recent version of Rob's projection code

Presentations, Posters, and Papers

Related Entries