CyberShake Source Filtering

From SCECpedia
Revision as of 18:40, 4 February 2015 by Scottcal (talk | contribs) (Created page with 'As of February 2015, CyberShake runs show a damping effect at spectral acceleration periods close to the simulation period. If we perform a 0.5 Hz CyberShake run, we see a dampi…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

As of February 2015, CyberShake runs show a damping effect at spectral acceleration periods close to the simulation period. If we perform a 0.5 Hz CyberShake run, we see a damping factor of 2 or more when we look at the 0.5 Hz/2 second hazard curves.

We are interested in examining the filtering we are using to see if we can improve this so that hazard curves at the simulation period do not show damping. This would be a big benefit, as a 1 Hz CyberShake run could produce undamped 1 second hazard curves, which are of broad interest.


Background

CyberShake only performs filtering when the source impulse is created for the SGTs. Neither the SGTs nor the seismograms are directly filtered. Therefore, we decided to run some experiments by changing the filtering of the source. By default, the source is low-pass filtered with a 4th-order Butterworth filter at the frequency of the CyberShake run. For this experiment, we propose filtering the source at 2 times the frequency of the CyberShake run.

File:0.5hz source with 0.5hz filter.jpg

File:0.5hz source with 1hz filter.jpg